Thermal Modeling for Processors and Systems-on-Chip

  • Kevin Skadron
  • Mircea Stan
  • Wei Huang


Chip power density and consequently on-chip hot spot temperature have been increasing steadily as a result of non-ideal technology scaling, leading to severely thermally constrained designs. In this chapter, we review a chip- and package-level thermal modeling and simulation approach, HotSpot, that is unique because it is compact, correct by construction, flexible, and parameterized. HotSpot is important for temperature-aware design, especially during early pre-RTL stages of SoC and processor designs. Several case studies further illustrate the necessity of thermal simulations and the usefulness of HotSpot.


Solder Ball Design Flow Leakage Power Heat Spreading Thermal Interface Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Huang, W., Stan, M.R., Skadron, K., Sankaranarayanan, K., Ghosh, S., Velusamy, S.: Compact thermal modeling for temperature-aware design. In: Proceedings of Design Automation Conference (DAC), pp. 878–883, June (2004).Google Scholar
  2. 2.
    Sabry, M.-N.: Compact thermal models for electronic systems. IEEE Trans Components Packaging Technol 26(1), 179–185, March (2003).CrossRefGoogle Scholar
  3. 3.
    Rosten, H.I., Lasance, C.J.M., Parry, J.D.: The world of thermal charaterization according to DELPHI–-part I: Background to DELPHI. IEEE Trans Components Packaging Technol 20(4), 384–391, December (1997).CrossRefGoogle Scholar
  4. 4.
    Lasance, C.J.M., Rosten, H.I., Parry, J.D.: The world of thermal charaterization according to DELPHI–-part II: Experimental and numerical methods. IEEE Trans Components Packaging Technol 20(4), 392–398, December (1997).CrossRefGoogle Scholar
  5. 5.
    Lasance, C.J.M.: The influence of various common assumptions on the boundary-condition-independence of compact thermal models. IEEE Trans Components, Packaging, Manufacturing Technol–Part A 27(3), 523–529, September (2004).CrossRefGoogle Scholar
  6. 6.
    Vinke, H., Lasance, C.J.M.: Compact models for accurate thermal charaterization of electronic parts. IEEE Trans Components, Packaging, Manufacturing Technol–Part A 20(4), 411–419, December (1997).CrossRefGoogle Scholar
  7. 7.
    Rosten, H., Lasance, C.: Delphi: The development of libraries of physical models of electronic components for an integrated design environment. In: Proceedings on Conference of International Electronics Packaging Society (CIEPS), (1994).Google Scholar
  8. 8.
    Bar-Cohen, A., Elperin, T., Eliasi, R.: \(\theta_{jc}\) charaterization of chip packages–-justification, limitations and future. IEEE Trans Components, Hybrids, Manufacturing Technol 12, 724–731, December (1989).CrossRefGoogle Scholar
  9. 9.
    Huang, W., Skadron, K., Sankaranarayanan, K., Ribando, R.J., Stan, M.R.: Accurate, pre-RTL temperature-aware processor design using a parameterized, Geometric thermal model. IEEE Trans Comput 57(9), 1277–1288, September (2008).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Huang, W., Humenay, E., Skadron, K., Stan, M.: The need for a full-chip and package thermal model for thermally optimized IC designs. In: Proceedings of the International Symposium on Low Power Electronic Design (ISLPED), pp. 245–250, August (2005).Google Scholar
  11. 11.
    Huang, W., Stan, M., Sankaranarayanan, K., Ribando, R., Skadron, K.: Many-core design from a thermal perspective. In: Proceedings of DAC, (2008).Google Scholar
  12. 12.
    Huang, W., Stan, M.R., Skadron, K., Ghosh, S., Velusamy, S., Sankaranarayanan, K.: Hotspot: A compact thermal modeling methodology for early-stage vlsi design. IEEE Trans Very Large Scale Integration (VLSI) Syst 14(5):501–513, May (2006).CrossRefGoogle Scholar
  13. 13.
    Huang, W., Stan, M.R., Skadron, K.: Parameterized physical compact thermal modeling. IEEE Trans Components Packaging Technol 28(4), 615–622, December (2005).CrossRefGoogle Scholar
  14. 14.
    Skadron, K., Stan, M.R., Huang, W., Velusamy, S., Sankaranarayanan, K., Tarjan, D.: Temperature-aware microarchitecture. In: Proceedings of the International Symposium on Computer Architecture (ISCA), pp. 2–13, June (2003).Google Scholar
  15. 15.
    Parry, J., Rosten, H., Kromann, G.B.: The development of component-level thermal compact models of a C4/CBGA interconnect technology: The motorola PowerPC 603 and PowerPC 604 RISC microproceesors. IEEE Trans Components Packaging Manufacturing Technol–Part A 21(1), 104–112, March (1998).CrossRefGoogle Scholar
  16. 16.
    Huang, W., Skadron, K., Gurumurthi, S., Ribando, R.J., Stan, M.R.: Differentiating the roles of IR measurement and simulation for power and temperature-aware design. In: Proceedings of IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), April (2009).Google Scholar
  17. 17.
    Velusamy, S., Huang, W., Lach, J., Stan, M.R., Skadron, K.: Monitoring temperature in fpga based socs. In: Proceedings of the International Conference on Computer Design (ICCD), pp. 634–637, October 2005.Google Scholar
  18. 18.
    Stolberg, H., Moch, S., Friebe, L., Dehnhardt, A., Kulaczewski, M., Berekovic, M., Pirsch, P.: An soc with two multimedia dsps and a risc core for video compression applications. In: Digest of Papers, IEEE International Solid-State Circuits Conference (ISSCC), February (2004).Google Scholar
  19. 19.
    The International Technology Roadmap for Semiconductors (ITRS), (2007).Google Scholar
  20. 20.
    Heo, S., Barr, K., Asanovic, K.: Reducing power density through activity migration. In: Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED), pp. 217–222, August (2003).Google Scholar
  21. 21.
    Srinivasan, J., Adve, S.V., Bose, P., Rivers, J.A.: The impact of technology scaling on lifetime reliability. In: Proceedings of the International Conference on Dependable Systems and Networks (DSN), June (2004).Google Scholar
  22. 22.
    Skadron, K., Sankaranarayanan, K., Velusamy, S., Tarjan, D., Stan, M.R., Huang, W.: Temperature-aware microarchitecture: Modeling and implementation. ACM Trans Arch Code Optim 1(1), 94–125, March (2004).CrossRefGoogle Scholar
  23. 23.
    Sankaranarayanan, K., Velusamy, S., Stan, M.R., Skadron, K.: A case for thermal-aware floorplanning at the microarchitectural level. J Instr-Level Parallelism 7, October (2005).Google Scholar
  24. 24.
    Lasance, C.J.M.: The urgent need for widely-accepted test methods for thermal interface materials. In: Proceedings of the 19th IEEE SEMI-THERM Symposium, pp. 123–128, (2003).Google Scholar
  25. 25.
    Han, Y., Koren, I., Moritz, C.A.: Temperature-aware floorplanning. In: Proceedings of Workshop on Temperature-Aware Computer Systems (TACS), (2005).Google Scholar
  26. 26.
    Li, Y., Lee, B., Brooks, D., Hu, Z., Skadron, K.: CMP design space exploration subject to physical constraints. In: Proceedings of HPCA, (2006).Google Scholar
  27. 27.
    Chaparro, P., Gonzalez, J., Magklis, G., Cai, Q., Gonzalez, A.: Understanding the thermal implications of multicore architectures. IEEE Trans Parallel Distributed Syst 18(8), 1055–1065, (2007).CrossRefGoogle Scholar
  28. 28.
    Memik, S.O., Mukherjee, R., Ni, M., Long, J.: Optimizing thermal sensor allocation for microprocessors. IEEE Trans Comput Aided Design 27(3), 516–527, March (2008).CrossRefGoogle Scholar
  29. 29.
    Sharifi, S., Simunic Rosing, T.: Accurate temperature sensing for efficient thermal management. In: Proceedings of IEEE International Symposium on Quality Electronic Design (ISQED), (2008).Google Scholar
  30. 30.
    Memik, S.O., Mukherjee, R.: An integrated approach to thermal management in high-level synthesis. IEEE Trans VLSI 14(11), 1165–1174, November (2006).CrossRefGoogle Scholar
  31. 31.
    Yang, S., Wolf, W., Vijaykrishnan, N., Xie, Y.: Reliability-aware SOC voltage islands partition and floorplan. In: Proceedings of IEEE Annual Symposium on VLSI (ISVLSI), (2006).Google Scholar
  32. 32.
    He, Z., Peng, Z., Eles, P., Rosinger, P., Al-Hashimi, B.M.: Thermal-aware SoC test scheduling with test set partitioning and interleaving. J Electron Testing Theory Appl 24(1–3), 247–257, (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of VirginiaCharlottesvilleUSA
  2. 2.University of VirginiaCharlottesvilleUSA
  3. 3.IBM ResearchAustinUSA

Personalised recommendations