Advertisement

Integrated Nano-Bio-VLSI Approach for Designing Error-Free Biosensors

  • Shantanu Chakrabartty
  • Evangelyn C. Alocilja
  • Yang Liu
Chapter

Abstract

The field of nano-biosensors and nano-bioelectronics presents many opportunities as well as challenges. One of the challenges in nano-biosensors is its susceptibility to device and biomolecular artifacts which severely degrades its reliability. In this regard, a bio-silicon integration offers a unique opportunity for designing ultra-reliable biosensors where high degree of sensitivity and specificity offered by biomolecules (antibodies, aptamers, or enzymes) could be exploited in conjunction with high computational reliability offered by silicon circuits. At the core of this integration is a forward error correction (FEC) technique which exploits synthetic redundancy at the biomolecular level to correct for random and systematic errors. In this chapter, we first present the fundamentals behind FEC biosensors followed by an integrated nano-bio-VLSI design flow which is used for designing FEC biosensors. Each of the key concepts of this design flow is illustrated for a model immunoassay which uses antibodies labeled with conductive polyaniline nanowires for biomolecular encoding.

Keywords

Logic Gate Bovine Viral Diarrhea Virus Forward Error Correction Factor Graph Repetition Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Marshall, “Getting the Noise Out of Gene Arrays,” Science, news, vol. 306, 22 October, 2004.Google Scholar
  2. 2.
    Y. Tu, G. Stolovitzky, U. Klein, “Quantitative Noise Analysis for Gene Expression Microarray Experiments,” Proceedings of the National Academy of Sciences, pp. 14031–14036, 2002.Google Scholar
  3. 3.
    L. J. Kricka, “Interferences in Immunoassay – Still a Threat,” Clinical Chemistry, vol. 46, pp. 1037–1038, 2000.Google Scholar
  4. 4.
    W. Preiser, N. S. Brink, A. Hayman, J. Waite, P. Balfe, R. S. Tedder, “False-Negative HIV Antibody Test Results,” Journal of Medical Virology, vol. 600, pp. 43–47, 2000.CrossRefGoogle Scholar
  5. 5.
    C. Selby, “Interference in Immunoassay,” Annals of Clinical Biochemistry, vol. 36, pp. 704–721, 1999.Google Scholar
  6. 6.
    S. Rotmensch, L. A. Cole, “False Diagnosis and Needless Therapy of Presumed Malignant Disease in Women with False-Positive Human Chorionic Gonadotropin Concentrations”. Lancet, vol. 355, pp. 712–715, 2000.CrossRefGoogle Scholar
  7. 7..
    A. Hassibi, H. Vikalo, A. Hajimiri, “On Noise Processes and Limits of Performance in Biosensors,” Journal of Applied Physics, vol. 102, no. 1, pp. 014909(12pp), 2007.Google Scholar
  8. 8.
    R. L.Stears, T. Martinsky, M. Schena, “Trends in Microarray Analysis,” Nature Medicine,vol. 9, pp. 140–145, 2003.CrossRefGoogle Scholar
  9. 9.
    S. P. Mohanty, E. Kougianos, “Biosensors: A Tutorial Review,” IEEE Potentials, vol. 25, no. 2, pp. 35–40, 2006.CrossRefGoogle Scholar
  10. 10.
    Y. Wang, F. S. Makedon, J. C. Ford, J. Pearlman, “HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data”. Bioinformatics, vol. 21, 2005.Google Scholar
  11. 11.
    J. P. Fitch, E. Raber, D. R. Imbro, “Technology Challenges in Responding to Biological or Chemical Attacks in the Civilian Sector” Science, vol. 21, 2003.Google Scholar
  12. 12.
    S. M. Huse, J. A. Huber, H. G. Morrison, M. L. Sogin, D. M. Welch, “Accuracy and quality of massively parallel DNA pyrosequencing” Genome Biology, vol. 8, 2007.Google Scholar
  13. 13.
    J. P. Noonan, G. Coop, S. Kudaravalli, D. Smith, J. Krause, J. Alessi, F. Chen, D. Platt, S. Paabo, J. K. Pritchard, E. M. Rubin, Science, “Sequencing and analysis of Neanderthal genomic DNA” vol. 17, 2006.Google Scholar
  14. 14.
    C. Wingren, A. K. Borrebaeck, “Progress in Miniaturization of Protein Arrays – A Step Closer to High-density Nanoarrays,” Drug Discov Today, vol. 12, no. 19–20, pp. 813–819, 2007.CrossRefGoogle Scholar
  15. 15.
    M. Schena, Microarray Analysis, Wiley, New York, 2003.Google Scholar
  16. 16.
    R. Wiese, Y. Belosludtsev, T. Powdrill, P. Thompson, M. Hogan, “Simultaneous Multianalyte ELISA Performed on a Microarray Platform,” Clinical Chemistry, vol. 47, pp. 1451–1457, 2001.Google Scholar
  17. 17.
    C. R. Taitt, J. P. Golden, Y. S. Shubin, L. C. Shriver-Lake, K. E. Sapsford, A. Rasooly, F. S. Ligler, “A Portable Array Biosensor for Detecting Multiple Analytes in Complex Samples,” Microbial Ecology, vol. 47, no. 2, pp. 175–185, 2004.CrossRefGoogle Scholar
  18. 18.
    G. J. Zhang et al, “Production of Nanopatterns by a Combination of Electron Beam Lithography and a Self-assembled Monolayer for an Antibody Nanoarray,” Journal of Nanoscience and Nanotechnology, vol. 7, pp. 410–417, 2007.CrossRefGoogle Scholar
  19. 19.
    S. J. Park, T. A. Taton, C. A. Mirkindagger, “Array-Based Electrical Detection of DNA with Nanoparticle Probes,” Science, vol. 295, no. 5559, pp. 1503–1506, 2002.Google Scholar
  20. 20.
    T. K. Moon, Error Correction Coding, John Wiley and Sons, New Jersey, 2005.CrossRefGoogle Scholar
  21. 21.
    W. R. Heineman, W. B. Jensen, “Leland C. Clark Jr. (1918C2005),” Biosensors and Bioelectronics, vol. 21, no. 8, pp. 1403–1404, 2006.CrossRefGoogle Scholar
  22. 22.
    D. R. Thevenot, K. Toth, R. A. Durst, G. S. Wilsond, “Electrochemical Biosensors: Recommended Definitions and Classification,” Biosensors and Bioelectronics, vol. 16, no. 1, pp. 121–131, January 2001.CrossRefGoogle Scholar
  23. 23.
    S. Draghici, Data Analysis Tools for DNA Microarrays, Chapman and Hall/CRC Press, 2003.Google Scholar
  24. 24.
    M. L. Lee, F. C. Kuo, G. A. Whitmore, J. Sklar, “Importance of Replication in Microarray Gene Expression Studies: Statistical Methods and Evidence from Repetitive cDNA Hybridizations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 18, pp. 9834–9839, August 2000.MATHCrossRefGoogle Scholar
  25. 25.
    W. Zhang, I. Shmulevich (editors), Computational and Statistical Approaches to Genomics (Kluwer Academic Publishers, New York, 2002).Google Scholar
  26. 26.
    F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C. M. Lieber, “Electrical Detection of Single Viruses,” Proceedings of the National Academy of Sciences, vol. 101, no. 39, pp. 14017–14022, 2004.CrossRefGoogle Scholar
  27. 27.
    G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, C. M. Lieber, “Multiplexed Electrical Detection of Cancer Markers with Nanowire Sensor Arrays,” Nature Biotechnology, vol. 23, pp. 1294–1301, 2005.CrossRefGoogle Scholar
  28. 28.
    D. Janasek, J. Franzke, A. Manz, “Scaling and the Design of Miniaturized Chemical-Analysis Systems,” Nature, vol. 442, pp. 19–27, July 2006.CrossRefGoogle Scholar
  29. 29.
    Lin-Li Lv1 et al., “Construction of an Antibody Microarray Based on Agarose-Coated Slides,” Electrophoresis, vol. 28, pp. 406–413, 2007.Google Scholar
  30. 30.
    F. Vinet, P. Chaton, Y. Fouillet, “Microarrays and Microfluidic Devices: Miniaturized Systems for Biological Analysis,” Microelectronic Engineering, vol. 61–62, pp. 41–47, July 2002.CrossRefGoogle Scholar
  31. 31.
    A. Hassibi, “Integrated Microarrays,” Ph.D. Thesis, Stanford University, 2006.Google Scholar
  32. 32.
    J. Madou, R. Cubicciotti, “Scaling Issues on Chemical and Biological Sensors,” Proceedings of IEEE, vol. 91–830, 2003.Google Scholar
  33. 33.
    Y. Liu, E. C. Alocilja, S. Chakrabartty, “Forward Error Correcting Biosensors: Modeling, Algorithm, and Fabrication, IEEE Biomedical Circuits and Systems Conference, Baltimore, USA, 2008.Google Scholar
  34. 34.
    S. Chakrabartty, Y. Liu, “Towards Reliable Multi-Pathogen Biosensors Using High-Dimensional Encoding and Decoding Techniques, SPIE Symposium on NanoScience+Engineering, San Diego, CA, 2008.Google Scholar
  35. 35.
    Y. Gao, G. Hu, Y. H. Lin, P. M. Sherman, D. Li, “An Electrokinetically-Controlled Immunoassay for Simultaneous Detection of Multiple Microbial Antigens,” Biomedical Microdevices, vol 7, no. 4, pp. 301–312, 2005.Google Scholar
  36. 36.
    C. E. Shannon, A Mathematical Theory of Communication, University of Illinois Press, 1949 (reprinted 1998).Google Scholar
  37. 37.
    Z. Muhammad-Tahir, E. C. Alocilja, “A Conductimetric Biosensor for Biosecurity,” Biosensors and Bioelectronics, vol. 18, pp. 813–819, 2003.CrossRefGoogle Scholar
  38. 38.
    Z. Muhammad-Tahir, E. C. Alocilja, “Fabrication of a Disposable Biosensor for Escherichia coli o157:H7 Detection, ” IEEE Sensors Journal, vol. 3, pp. 345–351, 2003.Google Scholar
  39. 39.
    Z. Muhammad-Tahir, E. C. Alocilja, “Rapid Detection of Bovine Viral Diarrhea Virus as Surrogate of Bioterrorism Agents,” EEE Sensors Journal, vol. 4, pp. 757–762, 2005.CrossRefGoogle Scholar
  40. 40.
    Y. Iribe, M. Suzuki, “Integrated Enzyme Switch as a Novel Biosensing Device,” Biosensors and Bioelectronics, The 7th world congress of biosensors, Japan, 2002.Google Scholar
  41. 41.
    T. A. Sergeyeva, S. A. Piletskii, A. E. Rachkov, A. V. El’Skaya, N. V. Lavrik, “Polyaniline Label-Based Conductometric Sensor for IgG Detection,” Sensors and Actuators B: Chemical, vol. 34, no. 1, pp. 283–288, 1996.CrossRefGoogle Scholar
  42. 42.
    J. H. Kim, J. H. Cho, G. S. Cha, C. -W. Lee, H. -B. Kim, S. -H. Paek, “Conductimetric Membrane Strip Immunosensor with Polyaniline Bound Gold Colloids as Signal Generator,” Biosensors and Bioelectronics, vol. 14, no. 12, pp. 907–915, 2000.CrossRefGoogle Scholar
  43. 43.
    Y. Zuo, S. Chakrabartty, Z. Muhammad-Tahir, S. Pal, E. C. Alocilja, “Spatio-Temporal Processing for Multichannel Biosensors Using Support Vector Machines,” IEEE Sensors Journal, vol. 6, no. 6, pp. 1644–1651, 2006.CrossRefGoogle Scholar
  44. 44.
    J. M. Jay, Modern Food Microbiology, Aspen Publishers, Inc., Gaithersburg, MD, 2000.Google Scholar
  45. 45.
    E. J. Dubovi, “The Diagnosis of Bovine Viral Diarrhea Virus – A Laboratory View,” Veterinary Medicine, vol. 85, pp. 1133–1139, 1990.Google Scholar
  46. 46.
    E. T. Ryser, Public Health Concerns. E. H. Marth, J. L. Steele (editors), Applied Dairy Microbiology, Marcel Dekker, Inc., NY, pp. 263–404, 1998.Google Scholar
  47. 47.
    Y. Liu, S. Chakrabartty, E. C. Alcilja, “Fundamental Building Blocks for Molecular Bio-Wire Based Forward-Error Correcting Biosensors,” Nanotechnology, vol. 18, no. 42, pp. 424017(6pp), October 24, 2007.Google Scholar
  48. 48.
    Y. P. Tsividis, Operation and Modeling of the MOS Transistor, McGraw-Hill, New York, 1988.Google Scholar
  49. 49.
    A. Gore, S. Chakrabartty, S. Pal, E. C. Alocilja, “A Multichannel Femtoampere-Sensitivity Potentiostat Array for Biosensing Applications,” IEEE Transactions on Circuits and Systems I, vol. 53, no. 11, pp. 2357–2363, November 2006.CrossRefGoogle Scholar
  50. 50.
    Y. Liu, A. Gore, S. Chakrabartty, E. C. Alcilja, “Characterization of Sub-Systems of a Molecular Bio-Wire Based Biosensor Device,” Microchimica Acta, vol. 163, no. 1–2, pp. 49–56, 2008.CrossRefGoogle Scholar
  51. 51.
    R. G. Gallager, Low-Density Parity-Check Codes, MIT Press, Cambridge, MA, 1963.Google Scholar
  52. 52.
    Hans-Andrea Loeliger, “An Introduction to Factor Graphs,” IEEE Signal Processing Magazine, vol. 21, pp:28–41, Jan.2004.Google Scholar
  53. 53.
    G. D. Forney, Jr., “Codes on Graphs: Normal Realizations,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 520–548, 2001.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shantanu Chakrabartty
    • 1
  • Evangelyn C. Alocilja
    • 1
  • Yang Liu
    • 1
  1. 1.Michigan State UniversityEast LansingUSA

Personalised recommendations