Energy Harvesting for Bio-sensing by Using Carbon Nanotubes

  • Koushik Maharatna
  • Karim El Shabrawy
  • Bashir Al-Hashimi


In this chapter, we describe how single-wall carbon nanotubes (SWCNTs) can be used to develop a solar energy-based energy harvester to support various pervasive applications. To achieve this, we utilize the remarkable band-gap tunability property of SWCNTs that originates due to variations in its diameter and chirality during the synthesis process. After a brief introduction to the electronic property of CNT, we show how the band-gap tunability can be quantified through step-by-step theoretical analysis. Next, the resulting band-gap tunability is compared with the solar spectrum. Finally, a conceptual potentially high solar cell structure is described exploiting this band-gap tunability of SWCNT.


Solar Spectrum Normalize Root Mean Square Error Chemical Vapor Deposition Process Chiral Angle SWCNT Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Biomedical Wireless Sensor Network. NORDIC Innovation Centre. Report available at
  2. 2.
    A. Triantafyllidis et al., “An Open and Reconfigurable Wireless Sensor Network for Pervasive Health Monitoring,” Methods Inf Med., vol. 47, pp. 229–234, 2008.Google Scholar
  3. 3.
    B. Banazwski, and R. K. Shah, “The Role of Fuel Cells for Consumer Electronic Products and Toys,” Proceedings of the 1st International Conference on Fuel Cell Science, Engineering and Technology, Rochester, NY, USA, pp. 149–155, 2003.Google Scholar
  4. 4.
    A. H. Epstein, “Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines,” J. Eng. Gas Turbines Power, vol. 126, pp. 205–226, 2004.CrossRefGoogle Scholar
  5. 5.
    P. V. Kamat, “Harvesting Photons with Carbon Nanotubes,” Nanoday, vol. 1, No. 4, pp. 20–27, 2006.Google Scholar
  6. 6.
    S. Tanaka, K.-S. Changa, K.-B. Mina, D. Satoh, K. Yoshida, and M. Esashi, “MEMS-based Components of a Miniature Fuel Cell/Fuel Reformer System,” J. Chem. Eng., vol. 101, pp. 143–149, 2004.CrossRefGoogle Scholar
  7. 7.
    P. B. Koeneman, I. J. Busche-Vishniac, and K. L. Wood, “Feasibility of Micro Power Supplies for MEMS,” IEEE J. Microelectomech. Syst., vol. 6, pp. 355–362, 1997.CrossRefGoogle Scholar
  8. 8.
    G. Görge, M. Kirstein, and R. Erbel, “Microgenerators for Energy Autarkic Pacemakers and Defibrillators: Fact or Fiction,” Herz, vol. 26, pp. 64–68, 2001.Google Scholar
  9. 9.
    R. Amirtharajah, and A. P. Chandrakasan, “Self-powered Signal Processing Using Vibration-based Power Generation,” IEEE J. Solid-State Circuits, vol. 33, pp. 687–695, 1998.CrossRefGoogle Scholar
  10. 10.
    S. A. Jacobson, and A. H. Epstein, “An Informal Survey of Power MEMS,” Proceedings of the International Symposium on Micro-Mechanical Engineering ISMME (Japan), p. K18, 2003.Google Scholar
  11. 11.
    S. P. Beeby, M. J. Tudor, and N. M. White, “Energy Harvesting Vibration Sources for Microsystems Applications,” Meas. Sci. Technol., vol. 17, pp. R175–R195, 2006.CrossRefGoogle Scholar
  12. 12.
    “Spring Shaped Carbon Nanotubes,” Energy Harvest. J., 29 September 2009, available at
  13. 13.
  14. 14.
    P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-Nanotube Photonics and Optoelectronics,” Nat. Photonics, vol. 2, pp. 341–350, 2008.CrossRefGoogle Scholar
  15. 15.
    D. A. Stewart, F. Léonard, “Energy Conversion Efficiency in Nanotube Optoelectronics,” Nano Lett., vol. 5, pp. 219–222, 2005.CrossRefGoogle Scholar
  16. 16.
    J. U. Lee, P. P. Gipp, and C. M. Heller, “Carbon Nanotube p-n Junction Diodes,” Appl. Phys. Lett., vol. 85, pp. 145–147, 2004.CrossRefGoogle Scholar
  17. 17.
    M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. Avouris, “Photoconductivity of Single Carbon Nanotubes,” Nano Lett., vol. 3, pp. 1067–1071, 2003.CrossRefGoogle Scholar
  18. 18.
    C. Chen, L. Yang, Y. Lu, G. Xiao, and Y. Zhang, “Assessment of Optical Absorption in Carbon Nanotube Photovoltaic Device by Electromagnetic Theory,” IEEE Trans. Nanotechnol., vol. 8, pp. 303–314, 2009.CrossRefGoogle Scholar
  19. 19.
    C. Chen, Y. Lu, E. S. Kong, Y. Zhang, and S. Lee, “Nanowelded Carbon-Nanotube-based Solar Microcells,” Small, vol. 4, pp. 1313–1318, 2008.CrossRefGoogle Scholar
  20. 20.
    W. J. Blau, and J. Wang, “Optical Materials: Variety Pays off for Nanotubes,” Nat. Nanotechnol., vol. 3, pp. 705–706, 2008.CrossRefGoogle Scholar
  21. 21.
  22. 22.
    J. W. Mintmire, and C. T. White, “Electronic and Structural properties of Carbon Nanotubes,” Carbon, vol. 33, pp. 893–902, 1995.CrossRefGoogle Scholar
  23. 23.
    R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic Structure of Chiral Graphene Tubules,” Appl. Phys. Lett., vol. 60, pp. 2204–2206, 1992.CrossRefGoogle Scholar
  24. 24.
    J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “Electronic Structure of Atomically Resolved Carbon Nanotubes,” Nature, vol. 391, pp. 59–62, 1998.CrossRefGoogle Scholar
  25. 25.
    N. Hamada, S. Sawada, and A. Oshiyama, “New One-dimensional Conductors: Graphitic Microtubules,” Phys. Rev. Lett., vol. 68, pp. 1579–1581, 1992.CrossRefGoogle Scholar
  26. 26.
    R. Saito, M. S. Dresselhaus, and G. Dresselhaus, Physical Properties of Carbon Nanotubes. Imperial College Press, 1998.Google Scholar
  27. 27.
    S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, “Tight-binding Description of Graphene,” Phys. Rev. B, vol. 66, p. 035412, 2002.CrossRefGoogle Scholar
  28. 28.
    D. Kienle, J. I. Cerda, and A. W. Ghosh, “Extended Hückel Theory for Bandstructure, Chemistry and Transport: I. Carbon Nanotubes,” J. Appl. Phys., vol. 100, p. 043714, 2006.CrossRefGoogle Scholar
  29. 29.
    O. Gülseren, T. Yildirim, and S. Ciraci, “Systematic Ab Initio Study of Curvature Effects in Carbon Nanotubes,” Phys. Rev. B, vol. 65, p. 153405, 2002.CrossRefGoogle Scholar
  30. 30.
    T. W. Odom, J. Huang, P. Kim, and C. M. Lieber, “Atomic Structure and Electronic Properties of Single-walled Carbon Nanotubes,” Nature, vol. 391, pp. 62–64, 1998.CrossRefGoogle Scholar
  31. 31.
    X. Liu, T. Pichler, M. Knupfer, M. S. Golden, J. Fink, H. Kataura, and Y. Achiba, “Detailed Analysis of the Mean Diameter and Diameter Distribution of Single-wall Carbon Nanotubes from Their Optical Response,” Phys. Rev. B, vol. 66, 2002.Google Scholar
  32. 32.
    S. Reich, C. Thomsen, and P. Ordejon, “Electronic Band Structure of Isolated and Bundled Carbon Nanotubes,” Phys. Rev. B, vol. 65, p. 155411, 2002.CrossRefGoogle Scholar
  33. 33.
    Y. Sato, K. Yanagi, Y. Miyata, K. Suenaga, H. Kataura, and S. Iijima, “Chiral-Angle Distribution for Separated Single-Walled Carbon Nanotubes,” Nano Lett., vol. 8, pp. 3151–3154, 2008.CrossRefGoogle Scholar
  34. 34.
    A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, and E. I. Kauppinen, “Correlation Between Catalyst Particle and Single-walled Carbon Nanotube Diameters,” Carbon, vol. 43, pp. 2251–2257, 2005.CrossRefGoogle Scholar
  35. 35.
    J. R. Hauptmann, “Spin-Transport in Carbon Nanotubes,” Faculty of Science, Master of Science, University of Copenhagen, 2003.Google Scholar
  36. 36.
    K. El-Shabrawy, K. Maharatna, D. Bagnall, and B. Al-Hashimi, “Modeling SWCNT Band-gap and Effective Mass Variation Using a Monte Carlo Approach,” IEEE Trans. Nanotechnol., available at…arnumber=5175416…isnumber=4359107.
  37. 37.
    K. El Shabrawy, K. Maharatna, D. M. Bagnall, and B. M. Al-Hashimi, “A New Analytical Model for Predicting SWCNT Band-gap from Geometrical Properties,” ICICDT, Grenoble, France, 2008.Google Scholar
  38. 38.
    M. S. Dresselhaus, R. Saito, and A. Jorio, “Semiconducting Carbon Nanotubes,” International Conference on the Physics of SemiconductorsICPS-27, pp. 25–31, 2005.Google Scholar
  39. 39.
    J. W. Ding, X. H. Yan, and J. X. Cao, “Analytical Relation of Band Gaps to Both Chirality and Diameter of Single-wall Carbon Nanotubes,” Phys. Rev. B, vol. 66, p. 073401, 2002.CrossRefGoogle Scholar
  40. 40.
    C. L. Kane, and E. J. Mele, “Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes,” Phys. Rev. Lett., vol. 78, pp. 1932–1935, 1997.CrossRefGoogle Scholar
  41. 41.
    T. Hiraoka, S. Bandow, H. Shinohara, and S. Iijima, “Control on the Diameter of Single-walled Carbon Nanotubes by Changing the Pressure in Floating Catalyst CVD,” Carbon, vol. 44, pp. 1853–1859, 2006.CrossRefGoogle Scholar
  42. 42.
    C. Lu, and J. Liu, “Controlling the Diameter of Carbon Nanotubes in Chemical Vapor Deposition Method by Carbon Feeding,” J. Phys. Chem. B, vol. 110, pp. 20254–20257, 2006.CrossRefGoogle Scholar
  43. 43.
    C. L. Cheung, A. Kurtz, H. Park, and C. M. Lieber, “Diameter-controlled Synthesis of Carbon Nanotubes,” J. Phys. Chem. B, vol. 106, pp. 2429–2433, 2002.CrossRefGoogle Scholar
  44. 44.
    A. Hazeghi, T. Krishnamohan, and H-S. P. Wong, “Schottky-Barrier Carbon Nanotube Field-effect Transistor Modeling,” IEEE Trans. Electron Devices, vol. 54, pp. 439–445, 2007.CrossRefGoogle Scholar
  45. 45.
    O. Zhou, H. Shimoda, B. Gao, S. Oh, L. Fleming, and G. Yue, “Materials Science of Carbon Nanotubes: Fabrication, Integration, and Properties of Macroscopic Structures of Carbon Nanotubes,” Acc. Chem. Res., vol. 35, pp. 1045–1053, 2002.CrossRefGoogle Scholar
  46. 46.
    C. Thomsen, S. Reich, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties. Wiley-VCH, 2004.Google Scholar
  47. 47.
    E. Malic, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, “Analytical Approach to Optical Absorption in Carbon Nanotubes,” Phys. Rev. B (Condens. Matter Mater. Phy.), vol. 74, p. 195431, 2006.Google Scholar
  48. 48.
    K. El-Shabrawy, K. Maharatna, and B. Al-Hashimi, “Exploiting SWCNT Structural Variability Towards the Development of a Photovoltaic Device,” Accepted in 12th International Symposium on Integrated Circuit, 14–16 December 2009.Google Scholar
  49. 49.
    H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical Properties of Single-wall Carbon Nanotubes,” Synth. Met., vol. 103, pp. 2555–2558, 1999.CrossRefGoogle Scholar
  50. 50.
    D. Chowdhary, and N. A. Kouklin, “dc Photoconduction Studies of Single-walled Carbon Nanotube Bundles,” Phys. Rev. B, vol. 76, p. 035416, 2007.CrossRefGoogle Scholar
  51. 51.
    S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, “Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes,” Science, vol. 298, pp. 2361–2365, 2002.CrossRefGoogle Scholar
  52. 52.
    “Standard G173–03 Tables for Reference Solar spectral Irradiances: Terrestrial Global 37 degree South Facing Tilt & Direct Normal + Circumsolar,” available at American Society for Testing and Materials (ASTM) International, 1999.
  53. 53.
    S. Kim, H. Lee, H. Tanaka, and P. S. Weiss, “Vertical Alignment of Single-Walled Carbon Nanotube Films Formed by Electrophoretic Deposition,” Langmuir, vol. 24, pp. 12936–12942, 2008.CrossRefGoogle Scholar
  54. 54.
    K. Mizunoa, J. Ishiib, H. Kishidac, Y. Hayamizua, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A Black Body Absorber from Vertically Aligned Single-walled Carbon Nanotubes,” PNAS, vol. 106, pp. 6044–6047, 2009.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Koushik Maharatna
    • 1
  • Karim El Shabrawy
    • 1
  • Bashir Al-Hashimi
    • 1
  1. 1.University of SouthamptonSouthamptonUK

Personalised recommendations