Surface Plasmon Resonance on Nanoscale Organic Films

  • Willem M. Albers
  • Inger Vikholm-Lundin


Over the past 20 years, surface plasmon resonance (SPR) has evolved into a very versatile detection method, particularly in bioscience applications. Not only the scientific literature has greatly expanded, but also the various commercial vendors of instrumentation, detection chips, and reagents have emerged. In the scientific sphere, the accent lies more and more on fabrication of nanostructures with interesting optical behavior (plasmonics), while in the R&D area, there are many new miniaturization efforts and combination with other detection methods, such as electrochemistry and quartz crystal microbalance (QCM). The present chapter will focus on the latest developments in making functional biochemical coatings for SPR detection as well as will review the basic theory behind the detection techniques.


Atomic Force Microscopy Surface Plasmon Resonance Localize Surface Plasmon Resonance Gold Colloid Gold Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from VTT Technical Research Centre, the EU, and TEKES in various projects is gratefully acknowledged. We also express thanks to Risto Ahorinta, of ORC, Tampere University of technology, for some ellipsometric measurements reported in this chapter.


  1. 1.
    Kretschmann E (1968) Radioactive decay of non radiative surface plasmons excited by light. Z. Naturforsch A 23a:2135–2136Google Scholar
  2. 2.
    Ritchie R H, Arakawa E T, Cowan J J, Hamm R N (1968) Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21:1530–1533Google Scholar
  3. 3.
    Kretschmann E (1971) The determination of the optical constants of metals by excitation of surface plasmons. Z. Phys. A 241:313–324Google Scholar
  4. 4.
    Raether H (1988) Surface Plasmons. Springer-Verlag, BerlinGoogle Scholar
  5. 5.
    Nylander C, Lundstrom I, Liedberg B (1983) Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4:299–304Google Scholar
  6. 6.
    Homola J (2006) Surface Plasmon Resonance Based Sensors. Springer-Verlag HeidelbergGoogle Scholar
  7. 7.
    Schasfoort R B M, Tudos A J (2004) Handbook of Surface Plasmon Resonance. RSC Publishing, CambridgeGoogle Scholar
  8. 8.
    Förch R, Schönherr H, Jenkins A T A (Eds) (2009) Surface Design: Applications in Bioscience and Nanotechnology. VCH/Wiley, WeinheimGoogle Scholar
  9. 9.
    Faraday M (1857) Experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc. Lond. 147:145–181Google Scholar
  10. 10.
    Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 4:377–445Google Scholar
  11. 11.
    Hutter E, Fendler J H (2004) Exploitation of localized surface plasmon resonance. Adv. Mater. 16:1685–1706Google Scholar
  12. 12.
    Stewart M E, Anderton C R, Thompson L B, Maria J, Gray S K, Rogers J A, Nuzzo R G (2008) Nanostructured plasmonic sensors. Chem. Rev. 108:494–521Google Scholar
  13. 13.
    Born M, Wolf E (1987) Principles of Optics. Pergamon Press, OxfordGoogle Scholar
  14. 14.
    Otto A (1968) Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216:398–410Google Scholar
  15. 15.
    Azzam R M A, Bashara N M (1987) Ellipsometry and Polarised Light. Elsevier, AmsterdamGoogle Scholar
  16. 16.
    Sadowski J W, Korhonen I K J, Peltonen J P K (1995) Characterisation of thin films and their structures in surface plasmon resonance measurements. Opt. Eng. 34:2581–2586Google Scholar
  17. 17.
    Salamon Z, Macleod H A, Tollin G (1997) Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. Part I. & 2. Biochim. Biophys. Acta 1331:117–129, 131–152Google Scholar
  18. 18.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108:462–493Google Scholar
  19. 19.
    Theye M L (1970) Investigation of the optical properties of Au by means of thin semitransparent films. Phys. Rev. B 2:3060–3078Google Scholar
  20. 20.
    Dold B, Mecke R (1965) Optische Eigenschaften von Edelmetallen, Übergangsmetallen und deren Legierungen im Infrarot (1. Teil). Optik 22:435–446Google Scholar
  21. 21.
    Heavens O S (1960) Optical properties of thin films. Rep. Prog. Phys. 23:1–675Google Scholar
  22. 22.
    Schiebener P, Straub J, Levelt-Sengers, J M H, Gallagher J S (1990) Refractive index of water and steam as function of wavelength, temperature and density. J. Phys. Chem. Ref. Data 19:677Google Scholar
  23. 23.
    Ghosh G (1997) Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. Appl. Opt. 36:1540–1546Google Scholar
  24. 24.
    Nelson B P, Frutos A G, Brockman J M, Corn R M (1999) Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments. Anal. Chem. 71:3928–3934Google Scholar
  25. 25.
    De Feijter J A, Benjamins J, Veer F A (1978) Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface. Biopolymers 17:1759–1772Google Scholar
  26. 26.
    Vörös J (2004) The density and refractive index of adsorbing protein layers. Biophys. J. 87:553–561Google Scholar
  27. 27.
    Qian R L, Mhatre R, Krull I S (1997) Characterization of antigen-antibody complexes by size-exclusion chromatography coupled with low-angle light-scattering photometry and viscometry. J. Chromatogr. A 787:101–109Google Scholar
  28. 28.
    Ball V, Ramsden J J (1998) Buffer dependence of refractive index increments. Biopolymers 46:489–492Google Scholar
  29. 29.
    Arwin H (1986) Optical properties of thin layers of bovine serum albumin, γ-globulin, and hemoglobin. Appl. Spectrosc. 40:313–318Google Scholar
  30. 30.
    Oudshoorn R C G, Kooyman R P H, Greve J (1996) Refractive index and layer thickness of on adsorbing protein as reporters of monolayer formation. Thin Solid Films 284–285:836–840Google Scholar
  31. 31.
    Sadowski J W, Lekkala J, Vikholm I (1991) Biosensors based on surface plasmons excited in non-noble metals. Biosens. Bioelectron. 6:439–444Google Scholar
  32. 32.
    Mayer C, Schalkhammer T (2005) Bioanalytical sensing using noble metal colloids. Top. Fluoresc. Spectrosc. 8:135–195Google Scholar
  33. 33.
    Kontio J M, Husu H, Simonen J, Huttunen M J, Tommila J, Pessa M, Kauranen M (2009) Source nanoimprint fabrication of gold nanocones with ∼10 nm tips for enhanced optical interactions. Opt. Lett. 34:1979–1981Google Scholar
  34. 34.
    Dahlin A, Zäch M, Rindzevicius T, Käll M, Sutherland D S, Höök F (2005) Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J. Am. Chem. Soc. 127:5043–5048Google Scholar
  35. 35.
    Turkevich J, Stevenson P C, Hillier J A (1951) Study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday. Soc. 11:55–75Google Scholar
  36. 36.
    Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspension. Nat. Phys. Sci. 241:20–21Google Scholar
  37. 37.
    Jana N R, Gearheart L, Murphy C J (2001) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mater. 13:2313–2322Google Scholar
  38. 38.
    Jadzinsky P D, Calero G, Ackerson C J, Bushnell, D A, Kornberg, R D (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318:430–433Google Scholar
  39. 39.
    Slot J W, Geuze H J (1985) A new method for preparing gold probes for multiple-labelling cytochemistry. Eur. J. Cell. Biol. 38:87–93Google Scholar
  40. 40.
    Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 94:801Google Scholar
  41. 41.
    Link S L, El-Sayed M A (1999) Size and temperature dependence of the plasmon adsorption of colloidal gold nanoparticles. J. Phys. Chem. 103:4212–4217Google Scholar
  42. 42.
    Creighton J A, Eadon D G (1991) Ultraviolet-visible absorption spectra of the colloidal metallic elements. J. Chem. Soc. Faraday Trans. 87:3881–3891Google Scholar
  43. 43.
    Englebienne P, Van Hoonacker A, Verhas M (2003) Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectroscopy 17:255–273Google Scholar
  44. 44.
    Haiss W, Thanh N T K, Aveyard J, Fernig D G (2007) Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 79:4215–4221Google Scholar
  45. 45.
    Khlebtsov N G (2008) Determination of size and concentration of gold nano-particles from extinction spectra. Anal. Chem. 80:6620–6625Google Scholar
  46. 46.
    Englebienne P (1998) Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 123:1599–1603Google Scholar
  47. 47.
    Gribnau T C J, Leuvering J H W, van Hell H (1986) Particle-labelled immunoassays: a review. J. Chrom. B 376:175–189Google Scholar
  48. 48.
    Brooks D E, Devine D V, Harris P C, Harris J E, Miller M E, Olal A D, Spiller L J, Xie Z C (1999) RAMP™: a rapid, quantitative whole blood immunochromatographic platform for point-of-care testing. Clin. Chem. 45:1676–1678Google Scholar
  49. 49.
    Lyon L A, Musick M D, Natan M J (1998) Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal. Chem. 70:5177–5183Google Scholar
  50. 50.
    Liedberg B, Nylander C, Lundström I (1995) Biosensing with surface plasmon resonance – how it all started. Biosens. Bioelectron. 10:i–ixGoogle Scholar
  51. 51.
    McDonnell J M (2001) Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr. Opin. Chem. Biol. 5:572–577Google Scholar
  52. 52.
    Arnold F H, Schofield S A, Blanch H W (1986) Analytical affinity chromatography: I. Local equilibrium theory and the measurement of association and inhibition constants. J. Chrom. A 355:1–12 & Arnold F H, Blanch H W (1986) Analytical affinity chromatography: II. Rate theory and the measurement of biological binding kinetics. J. Chrom. A 355:13–27Google Scholar
  53. 53.
    Cannon M J et al. (2004) Comparative analyses of a small molecule/enzyme interaction by multiple users of Biacore technology. Anal. Biochem. 330:98–113Google Scholar
  54. 54.
    Katsamba PS et al. (2006) Kinetic analysis of a high-afnity antibody/antigen interaction performed by multiple Biacore users. Anal. Biochem. 352:208–221Google Scholar
  55. 55.
    Navratilova I et al. (2007) Thermodynamic benchmark study using Biacore technology. Anal. Biochem. 364:67–77Google Scholar
  56. 56.
    Rich R L (2009) A global benchmark study using affinity-based biosensors. Anal. Biochem. 386:194–216Google Scholar
  57. 57.
    Karlsson R, Fält A (1997) Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J. Immunol. Methods 200:121–133Google Scholar
  58. 58.
    Morton T A, Myszka D G, Chaiken I M (1995) Interpreting complex binding kinetics from optical biosensors: a comparison of analysis by linearization, the integrated rate equation, and numerical integration. Anal. Biochem. 227:176–185Google Scholar
  59. 59.
    Rich R L, Myszka D G (2010) Grading the commercial optical biosensor literature – class of 2008: “The Mighty Binders”. J Mol. Recognit. 23:1–64Google Scholar
  60. 60.
    de Crescenzo G, Boucher C, Durocher Y, Jolicoeur M (2008) Kinetic characterization by surface plasmon resonance-based biosensors: principle and emerging trends. Cell. Mol. Bioeng. 1:204–215Google Scholar
  61. 61.
    Price N, Nairn J (2009) Exploring Proteins: A Student’s Guide to Experimental Skills and Methods. Oxford University Press, OxfordGoogle Scholar
  62. 62.
    Sips R (1950) On the structure of a catalyst surface. J. Chem. Phys. 18:1024Google Scholar
  63. 63.
    García-Calzóna J A, Díaz-García M E (2006) Review: characterization of binding sites in molecularly imprinted polymers. Sens. Actuators B 123:1180–1194Google Scholar
  64. 64.
    Vijayendran R A, Leckband D E (2001) A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal. Chem. 73:471–480Google Scholar
  65. 65.
    Selinger J V, Rabbany S Y (1997) Theory of heterogeneity in displacement reactions. Anal. Chem. 69:170–174Google Scholar
  66. 66.
    Jaroniec M, Madey R (1988) Physical Adsorption on Heterogeneous Solids. Elsevier, AmsterdamGoogle Scholar
  67. 67.
    Koopal L K, Vos C H W (1993) Adsorption on heterogeneous surfaces. Calculation of the adsorption energy distribution function or the affinity spectrum. Langmuir 9:2593–2605Google Scholar
  68. 68.
    Puzly A M, Matynia T, Gawdzik B, Poddubnaya O I (1999) Use of CONTIN for calculation of energy distribution. Langmuir 15:6016–6025Google Scholar
  69. 69.
    Press W H, Flannery B P, Teukolsky S A, Vetterling W T (1986) Numerical Recipes. Cambridge University Press, New York, p 502Google Scholar
  70. 70.
    Malmborg A-C, Michaëlsson A, Ohlin M, Jansson b, Borrebäck C A K (1992) Real time analysis of antibody-antigen reaction kinetics. Scand. J. Immunol. 35:643–650Google Scholar
  71. 71.
    Karlsson R, Katsamba P S, Nordin H, Pol E, Myszka D G (2006) Analyzing a kinetic titration series using affinity biosensors. Anal. Biochem. 349:136–147Google Scholar
  72. 72.
    Myszka D G, He X, Dembo M, Morton T A, Goldstein B (1998) Extending the range of rate constants available from BIACORE: interpreting mass transport-influenced binding data. Biophys. J. 75:583–594Google Scholar
  73. 73.
    Önell A, Andersson K (2005) Kinetic determinations of molecular interactions using Biacore-minimum data requirements for efficient experimental design. J. Mol. Recognit. 18:307–317Google Scholar
  74. 74.
    Svitel J, Boukari H, Van Ryk D, Willson R, Schuck P (2007) Probing the functional heterogeneity of surface binding sites by analysis of experimental binding traces and the effect of mass transport limitation. Biophys. J. 92:1742–1758Google Scholar
  75. 75.
    Myszka D A, Morton T A (1998) CLAMP: a biosensor kinetic data analysis program. Trends Biochem. Sci. 23:149–150Google Scholar
  76. 76.
    Lipschultz C A, Li Y, Smith-Gill S (2000) Experimental design for analysis of complex kinetics using surface plasmon resonance. Methods 20:310–318Google Scholar
  77. 77.
    Myszka D A (1999) Improving biosensor analysis. J Mol. Recognit. 12:279–284Google Scholar
  78. 78.
    Thevenot D R, Toth K, Durst R A, Wilson G S (1999) Pure Appl. Chem. 71:2333–2348Google Scholar
  79. 79.
    Wortberg M, Orban M, Renneberg R, Cammann K (1996) Fluorimetric immunosensors. In: Kress-Rogers E (Ed) Handbook of Biosensors and Electronic noses. CRC Press, Boca Raton, p 371Google Scholar
  80. 80.
    Eddowes M J (1987–1988) Direct immunochemical sensing: basic chemical principles and fundamental limitations. Biosensors 3:1–15Google Scholar
  81. 81.
    (2003) Biacore 3000 Instrument Handbook. GE Healthcare, UppsalaGoogle Scholar
  82. 82.
    Jonsson B, Löfås S, Lindquist G (1991) Immobilization of proteins to carboxy methyl dextran-modified gold surface for biospecific analysis in surface plasmon resonance sensors. Anal. Biochem. 198:268–277Google Scholar
  83. 83.
    Löfås S, Jönsson B (1992) A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J. Chem. Soc. Commun. 21:1526–1528Google Scholar
  84. 84.
    Kambhampati D (Ed) (2005) Protein Microarray Technology. VCH/Wiley, WeinheimGoogle Scholar
  85. 85.
    Boozer C, Kim G, Cong S, Guan H, Londergan T (2006) Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Curr. Opin. Biotechnol. 17:400–405Google Scholar
  86. 86.
    Eddings M A, Eckman J W, Arana C A, Papalia G A, Connolly J E, Gale B. K, Myszka D G (2009) “Spot and hop”: internal referencing for surface plasmon resonance imaging using a three-dimensional microfluidic flow cell array. Anal. Biochem. 385:309–313Google Scholar
  87. 87.
    Beusink J B, Lokate A M C, Besselink G A J, Pruijn G J M, Schasfoort R B M (2008) Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays. Biosens. Bioelectron. 23:839–844Google Scholar
  88. 88.
    Albers W M, Vikholm I, Viitala T, Peltonen J (2001) Interfacial and materials aspects of the immobilisation of biomolecules onto solid surfaces. In: Nalwa HS (Ed) Handbook of Surfaces and Interfaces of Materials. Academic Press, San Diegop. p. 1–(1/N)31Google Scholar
  89. 89.
    Shankaran D R, Miura N (2007) Trends in interfacial design for surface plasmon resonance based immunoassays. J. Phys. D: Appl. Phys. 40:7187–7200Google Scholar
  90. 90.
    Gutiérrez-Gallego R, Bosch J, Such-Sanmartín G, Segura J (2009) Surface plasmon resonance immunoassays – a perspective. Growth Horm. IGF Res. 19:388–398Google Scholar
  91. 91.
    Bilitewski U (2006) Review: protein-sensing assay formats and devices. Anal. Chim. Acta 568:232–247Google Scholar
  92. 92.
    Förch R, Schönherr H, Jenkins A T A (Eds) (2009) Surface Design: Applications in Bioscience and Nanotechnology. Wiley/VCH, WeinheimGoogle Scholar
  93. 93.
    Lofas S, Johnsson B, Tegendal K, Ronnberg I (1993) Dextran modified gold surface plasmon resonance sensors: immunoreactivity of immobilized antibodies and antibody–surface interaction studies. Colloids Surf. B 1:83–89Google Scholar
  94. 94.
    Stigter E C A, de Jong G J, van Bennekom W P (2005) An improved coating for the isolation and quantitation of interferon-γ in spiked plasma using surface plasmon resonance (SPR). Biosens. Bioelectron. 21:474–482Google Scholar
  95. 95.
    Löfås S (1995) Dextran modified self-assembled monolayer surfaces for use in biointeraction analysis with surface plasmon resonance. Pure Appl. Chem. 67:829–834Google Scholar
  96. 96.
    Löfås S, Johnsson B, Edström Å, Hansson A, Lindqvist G, Müller-Hillgren R-M, Stigh L (1995) Methods for site controlled coupling to carboxymethyldextran surfaces in surface plasmon resonance sensors. Biosens. Bioelectron. 10:813–822Google Scholar
  97. 97.
    GE Healthcare (2010) Data sheet No. 28–9681–84 AA, Sensor Chip CM7Google Scholar
  98. 98.
    Myszka D G (2004) Analysis of small-molecule interactions using Biacore S51 technology. Anal. Biochem. 329:316–323Google Scholar
  99. 99.
    Rich R L, Day Y S N, Morton T A, Myszka D G (2001) High-resolution and high-throughput protocols for measuring drug/human serum albumin interactions using BIACORE. Anal. Biochem. 296:197–207Google Scholar
  100. 100.
    Cannon M J, Myszka D G, Bagnato J D, Alpers D H, West F G, Grissom C B (2002) Anal. Biochem. 305:1–9Google Scholar
  101. 101.
    Rich R L, Hoth L R, Geoghegan K F, Brown T A, LeMotte P K, Simons S P, Hensley P, Myszka D G (2002) Kinetic analysis of estrogen receptor-ligand interactions. Proc. Natl. Acad. Sci. U.S.A. 99:8562–8567Google Scholar
  102. 102.
    Johnson B, Löfås S, Lindquist G, Edström Å, Müller-Hillgren R-M, Hansson A (1995) Comparison of methods for immobilisation to carboxymethyl dextran sensor surfaces by analysis of the specific activity of monoclonal antibodies. J. Mol. Recognit. 8:125–131Google Scholar
  103. 103.
    Volden S, Kaizheng Z, Nystrom B, Glomm W R (2009) Use of cellulose derivatives on gold surfaces for reduced nonspecific adsorption of immunoglobulin G. Colloids Surf. B, 72:266–271Google Scholar
  104. 104.
    Kyprianou D, Guerreiro A R, Chianella I, Piletska E V, Fowler S A, Karim K, Whitcombe M J, Turner A P F, Piletsky S A (2009) New reactive polymer for protein immobilisation on sensor surfaces. Biosens. Bioelectron. 24:1365–1371Google Scholar
  105. 105.
    Iwasaki Y, Omichi Y, Iwata R (2008) Site-specific dense immobilization of antibody fragments on polymer brushes supported by silicone nanofilaments. Langmuir 24:8427–8430Google Scholar
  106. 106.
    F. Khan, M. He, M.J. Taussig, Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on ninitrilotriacetic acid surfaces. Anal. Chem. 78 (2006) 3072–3079Google Scholar
  107. 107.
    Y. Huang, R. Shi, X. Zhong, D. Wang, M. Zhao, Y. Li, Enzyme-linked immunosorbent assays for insulin-like growth factor-I using six-histidine tag fused proteins. Anal. Chim. Acta 596 (2007) 116–123Google Scholar
  108. 108.
    Morgan H, Taylor D M (1992) A surface plasmon resonance immunosensor based on the streptavidin–biotin complex. Biosens. Bioelectron. 7:405–510Google Scholar
  109. 109.
    Bonroy K, Frederix F, Reekmans G, Dewolf E, De Palma R, Borghs G, Declerck P, Goddeeris B (2006) Comparison of random and oriented immobilisation of antibody fragments on mixed self-assembled monolayers. J. Immunol. Methods 312:167–181Google Scholar
  110. 110.
    Nagatomo K, Kawaguchi T, Miura N, Toko K, Matsumoto K (2009) Development of a sensitive surface plasmon resonance immunosensor for detection of 2,4-dinitrotoluene with a novel oligo (ethylene glycol)-based sensor surface. Talanta 79:1142–1148Google Scholar
  111. 111.
    Vikholm I, Viitala T, Albers W M, Peltonen J (1999) Highly efficient immobilisation of antibody fragments to functionalised lipid monolayers. Biochim. Biophys. Acta 1421:39–52Google Scholar
  112. 112.
    Goto Y, Matsuno R, Konno T, Takai M, Ishihara K (2008) Polymer nanoparticles covered with phosphorylcholine groups and immobilized with antibody for high-affinity separation of proteins. Biomacromolecules 9:828–833Google Scholar
  113. 113.
    Yuan Y, He H, Lee L J (2009) Protein A-based antibody immobilization onto polymeric microdevices for enhanced sensitivity of enzyme-linked immunosorbent assay. Biotechnol. Bioeng. 102:891–901Google Scholar
  114. 114.
    Lekkala J O, Sadowski J W (1994) Surface plasmon immunosensors. In: Aizawa M (Ed) Chemical Sensor Technology. Kodansha, Tokyo 5:199–213Google Scholar
  115. 115.
    Oh B K, Lee W, Chun B S, Bae Y M, Lee W H, Choi J W (2005) Surface plasmon resonance immunosensor for the detection of Yersinia enterocolitica. Colloids Surf. A 257–258:369–374Google Scholar
  116. 116.
    Svensson H G et al. (1998) Protein LA, a novel hybrid protein with unique single-chain Fv antibody- and Fab-binding properties. Eur. J. Biochem. 258:890–896Google Scholar
  117. 117.
    Kihlberg B M et al. (1992) Protein LG: a hybrid molecule with unique immunoglobulin binding properties. J. Biol. Chem. 267:25583–25588Google Scholar
  118. 118.
    Saerens D, Huang L, Bonroy K, Muyldermans S (2008) Review: antibody fragments as probe in biosensor development. Sensors. doi:10.3390/s8084669Google Scholar
  119. 119.
    Vareiro M M, Liu J, Knoll W, Zak K, Williams D, Jenkins A T (2005) Surface Plasmon fluorescence measurements of human chorionic gonadotropin: role of antibody orientation in obtaining enhanced sensitivity and limit of detection. Anal. Chem. 77:2426–2431Google Scholar
  120. 120.
    Jung Y, Jeong J Y, Chung B H (2008) Recent advances in immobilization methods of antibodies on solid supports. Analyst 133:697–701Google Scholar
  121. 121.
    O’Brien J C, Jones V W, Porter M D, Mosher C L, Henderson E (2000) Immunosensing platforms using spontaneously adsorbed antibody fragments on gold. Anal. Chem. 72:703–710Google Scholar
  122. 122.
    Weber J, Albers W M, Tuppurainen J, Link M, Gabl R, Wersing W, Schreiter M (2006) Shear mode FBARs as highly sensitive liquid biosensors. Sens. Actuators A 128:84–88Google Scholar
  123. 123.
    Albers W M, Auer S, Helle H, Munter T, Vikholm-Lundin I (2009) Functional characterisation of Fab’-fragments self-assembled onto hydrophilic gold surfaces. Colloids Surf. B 68:193–199Google Scholar
  124. 124.
    Vikholm I (2005) Self-assembly of antibody fragments and polymers onto gold for immunosensing. Sens. Actuators B 106:311–316Google Scholar
  125. 125.
    Vikholm-Lundin I (2005) Immunosensing based on site-directed immobilization of antibody fragments and polymers that reduce nonspecific binding. Langmuir 21:6473–6477Google Scholar
  126. 126.
    Vikholm-Lundin I, Albers W M (2006) Site-directed immobilisation of antibody fragments for detection of C-reactive protein. Biosens. Bioelectron. 21:1141–1148Google Scholar
  127. 127.
    Vikholm I. Sadowski J (2007) Method and biosensor for analysis. US Patent no. 7332327Google Scholar
  128. 128.
    Zayats M, Pogorelov S P, Kharitonov A B, Lioubashevski O (2003) Au nanoparticle-enhanced surface plasmon resonance sensing of biocatalytic transformations. Chem. Eur. J. 9:6108–6114Google Scholar
  129. 129.
    Hanning A, Roerade J, Delrow J J, Jorgenson R C (1999) Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution. Sens. Actuators B 54:25–36Google Scholar
  130. 130.
    Wink T, Zuilen S J V, Bult A, van Bennekom W P (1998) Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry. Anal. Chem. 70:827–832Google Scholar
  131. 131.
    Chen S-J, Chien F C, Lin G Y, Lee K C (2004) Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles. Opt. Lett. 29:1390–1392Google Scholar
  132. 132.
    Liu X, Sun Y, Song D Q, Zhang Q L, Tian Y, Zhang H Q (2004) Sensitivity-enhancement of wavelength-modulation surface plasmon resonance biosensor for human complement factor 4. Anal. Biochem. 333:99–104Google Scholar
  133. 133.
    Tian Y, Chen Y H, Song D Q, Liu X, Zhang H Q (2005) Acousto-optic tunable filter-surface plasmon resonance immunosensor for fibronectin, Anal. Chim. Acta 551:98–104Google Scholar
  134. 134.
    Gobi K V, Sasaki M, Shoyama Y, Miura N (2003) Highly sensitive detection of polycyclic aromatic hydrocarbons (PAHs) and association constants of the interaction between PAHs and antibodies using surface plasmon resonance immunosensor. Sens. Actuators B 89:137–143Google Scholar
  135. 135.
    Aldinger U, Pfeifer P, Schwotzer G, Steinrucke P (1998) A comparative study of spectral and angle-dependent SPR devices in biological applications. Sens. Actuators B 51:298–304Google Scholar
  136. 136.
    Besselink G A J, Kooyman R P H, van Os, P J H J, Engbers G H M, Schasfoort, R B M (2004) Signal amplification on planar and gel-type sensor surfaces in surface plasmon resonance-based detection of prostate-specific antigen. Anal. Biochem. 333:165–173Google Scholar
  137. 137.
    Choi J-W, Kang D-Y, Jang Y-H, Kim H-H, Min J, Oh B-K (2008) Ultra-sensitive surface plasmon resonance based immunosensor for prostate-specific antigen using gold nanoparticle-antibody complex. Colloids Surf. B 313–314:655–659Google Scholar
  138. 138.
    Mangeney C et al. (2002) Synthesis and properties of water-soluble gold colloids covalently derivatized with neutral polymer monolayers. J. Am. Chem. Soc. 124:5811–5821Google Scholar
  139. 139.
    Albers W M, Munter T, Laaksonen P, Vikholm-Lundin I (2010) Improved functionality of antibody-colloidal gold conjugates with the aid of lipoamide-grafted N-[tris(hydroxymethyl)methyl]acrylamide polymers. J. Colloid Interface Sci. 348(1):1–8Google Scholar
  140. 140.
    Fouqu’e B, Schaack B, Obëıd P, Combe S, Gétin S, Barritault P, Chaton P, Chatelein F (2005) Multiple wavelength fluorescence enhancement on glass substrates for biochip and cell analyses. Biosens. Bioelectron. 20:2335–2340Google Scholar
  141. 141.
    Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem. Rev. 109:1948–1998Google Scholar
  142. 142.
    Lucarelli F, Tombelli S, Minunni M, Marrazza G, Mascini M (2008) Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Anal. Chim. Acta 609:139–159Google Scholar
  143. 143.
    Ananthanawat C, Vilaivan T, Mekboonsonglarp W, Hoven V P (2009) Thio-lated pyrrolidinyl peptide nucleic acids for the detection of DNA hybridization using surface plasmon resonance. Biosens. Bioelectron. 24:3544–3549Google Scholar
  144. 144.
    Liu Y, Wilson W D (2010) Quantitative analysis of small molecule-nucleic acid interactions with a biosensor surface and surface plasmon resonance detection. Methods Mol. Biol. 613:1–23Google Scholar
  145. 145.
    Torres-Chavolla E, Alocilja E C (2009) Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 24:3175–3182Google Scholar
  146. 146.
    Kohlhammer H et al. (2004) Genomic DNA-chip hybridisation in t(11;14)-positive mantle cell lymphomas shows a high frequency of aberrations and allows a refined characterization of consensus regions. Blood 104:795–801Google Scholar
  147. 147.
    Deng J Y, Zhang X E, Mang Y, Zhang Z P, Zhou Y F, Liu Q, Lu H B, Fu Z J (2004) Oligonucleotide ligation assay-based DNA chip for multiplex detection of single nucleotide polymorphism. Biosens. Bioelectron. 19:1277–1283Google Scholar
  148. 148.
    Mannelli I, Lecerf L, Guerrouache M, Goossens M, Millot M-C, Canva M (2007) DNA immobilisation procedures for surface plasmon resonance imaging (SPRI) based microarray systems. Biosens. Bioelectron. 22:803–809Google Scholar
  149. 149.
    Mannelli I, Courtois V, Lecaruyer P, Roger G, Millot M C, Goossens M, Canva M (2006) Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA amplified samples. Sens. Actuators B 119 583–591Google Scholar
  150. 150.
    Bianchi N, Rutigliano C, Tomassetti M, Feriotto G, Zorzato F, Gambari R (1997) Biosensor technology and surface plasmon resonance for real-time detection of HIV-1 genomic sequences amplified by polymerase chain reaction. Clin. Diagn. Virol. 8:199–208Google Scholar
  151. 151.
    Feriotto G, Borgatti M, Mischiati C, Bianchi N, Gambari R (2002) Biosensor technology and surface plasmon resonance for real-time detection of genetically modified roundup ready soybean gene sequences. J. Agric. Food Chem. 50:955–962Google Scholar
  152. 152.
    Silin V, Plant A (1997) Biotechnological applications of surface plasmon resonance. Tibtech 15:353–359Google Scholar
  153. 153.
    Nikiforov T T, Rogers Y H (1995) The use of 96-well polystyrene plate for DNA hybridization-based assays: an evaluation of different approaches to oligonucleotide immobilization. Anal. Biochem. 227:201–209Google Scholar
  154. 154.
    Rehman F N, Audeh M, Abrama E S, Hammond P W, Kenney M, Boles T C (1999) Immobilisation of acrylamide-modified oligonucleotides by co-polymerisation. Nucleic Acids Res. 27:649–655Google Scholar
  155. 155.
    Nimyer C M, Boldt L, Ceyhan B, Blohm D (1999) DNA-directed immobilization: efficient, reversible, and site-selective surface binding or proteins by means of covalent DNA streptavidin conjugates. Anal. Biochem. 268:54–63Google Scholar
  156. 156.
    Herne T, Tarlov M (1997) Characterization of DNA probes immobilized on gold surfaces. J. Am. Chem. Soc. 119:8916–8920Google Scholar
  157. 157.
    Kim J H, Hong J, Yoon M, Yoon M Y, Juong H-S, Hwang H (2002) Solid-phase genetic engineering with DNA immobilized on a gold surface. J. Biotechnol. 96:213–221Google Scholar
  158. 158.
    Rogers Y H., Jiang-Baucom P, Huang Z J, Bogdanov V, Anderson S, Boyce-Jacino M (1999) Immobilization of oligonucleotides onto glass support via disulfide bonds: a method for preparation of DNA microarrays. Anal. Biochem. 266:23–30Google Scholar
  159. 159.
    Peterson A, Wolf L, Georgiadis R (2002) Hybridization of mismatched or partially matched DNA at surfaces. J. Am. Chem. Soc. 124:14601–14607Google Scholar
  160. 160.
    Lucarelli F, Marrazza G, Turner A P F, Mascini M (2004) Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. Biosens. Bioelectron. 19:515–530Google Scholar
  161. 161.
    Dugas V, Depret G, Chevalier Y, Nesme X, Souteyrand E (2004) Immobilization of single-stranded DNA fragments to solid surfaces and their repeatable specific hybridization: covalent binding or adsorption? Sens. Actuators B 101:112–121Google Scholar
  162. 162.
    Cloarec J-P, Chevolot Y, Laurenceau E, Phaner-Goutorbe M, Souteyrand E (2008) A multidisciplinary approach for molecular diagnostics based on biosensors and microarrays. ITBM-RBM 29:105–127Google Scholar
  163. 163.
    Sandström P, Boncheva M, Åkerman B (2003) Nonspecific and thiol-specific binding of DNA to Gold nanoparticles. Langmuir 19:7537–7543Google Scholar
  164. 164.
    Steel A B, Levicky R L, Herne T M, Tarlov M J (2000) Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophys. J. 79:975–981Google Scholar
  165. 165.
    Steel A, Herne T, Tarlov M (1999) Electrostatic interactions of redox cations with surface-immobilized and solution DNA. Bioconjug. Chem. 10:419–423Google Scholar
  166. 166.
    Vikholm-Lundin I, Piskonen R, Albers W M (2007) Hybridisation of surface-immobilised single-stranded oligonucleotides and polymer monitored by surface plasmon resonance. Biosens. Bioelectron. 22:1323–1329Google Scholar
  167. 167.
    Vikholm-Lundin I, Piskonen R (2008) Binary monolayers of single-stranded oligonucleotides and blocking agent for hybridization. Sens. Actuators B 134:189–192Google Scholar
  168. 168.
    Vikholm-Lundin I, Auer S, Munter T, Fiegl H, Apostolidou S (2009) Hybridization of binary monolayers of single stranded oligonucleotides and short blocking molecules. Surf. Sci. 603:620–624Google Scholar
  169. 169.
    Morris V J, Kirby A R, Gunning A P (2004) Atomic Force Microscopy for Biologists. Imperial College Press, LondonGoogle Scholar
  170. 170.
    Eaton P, West P (2010) Atomic Force Microscopy. Oxford University Press, OxfordGoogle Scholar
  171. 171.
    Watson G S, Watson J (Eds Quantitative Measurements of Nano Forces Using Atomic Force Microscopy (AFM) – Quantifying Nano Forces in Three-Dimensions Using AFM: Applications in the Biological, Physical and Chemical Sciences. VDM Verlag, SaarbrückenGoogle Scholar
  172. 172.
    Braga P C, Ricci D (2003) Atomic Force Microscopy: Biomedical Methods and Applications (Methods in Molecular Biology, Vol 242). Humana Press, Totowa NY, USAGoogle Scholar
  173. 173.
    Morris V J, Kirby A R, Gunning A P (2010) Atomic Force Microscopy for Biologists. Imperial College Press, LondonGoogle Scholar
  174. 174.
    Zhang Y, Sheng S J, Shao Z (1996) Imaging biological structures with the cryo atomic force microscope. Biophys. J. 71:2168–2176Google Scholar
  175. 175.
    Hafner J H, Cheung C L, Woolley A T, Lieber C M (2001) Structural and functional imaging with carbon nanotube AFM probes. Prog. Biophys. Mol. Biol. 77:73–110Google Scholar
  176. 176.
    Hafner J H, Cheung C L, Lieber C M (1999) Growth of nanotubes for probe microscopy tips. Nature (London) 398:761–762Google Scholar
  177. 177.
    Cheung C L, Hafner J H, Lieber C M (2000) Carbon nanotube atomic force microscopy tips: direct growth by chemical vapour deposition and application to high-resolution imaging. Proc. Natl. Acad. Sci. U.S.A. 97:3809–3813Google Scholar
  178. 178.
    San Paulo A, Garcia R (2000) High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes. Biophys. J. 78:1599–1605Google Scholar
  179. 179.
    San Paulo A, Garcia R (2000) High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes. Biophys. J. 78:1599–1605Google Scholar
  180. 180.
    Thomson N H (2005) The substructure of immunoglobulin G resolved to 25 kDa using amplitude modulation AFM in air. Ultramicroscopy 105:103–110Google Scholar
  181. 181.
    Zitzler L, Herminghaus S, Mugele F (2002) Capillary forces in tapping mode atomic force microscopy. Phys. Rev. B 66:155436–155443Google Scholar
  182. 182.
    Thomson N H (2005) Imaging the substructure of antibodies with tapping mode AFM in air: the importance of a water layer on mica. J Microsc. 217:193–199MathSciNetGoogle Scholar
  183. 183.
    Lallemand D, Rouillat M H, Dugas V, Chevolot Y, Souteyrand E, Phaner-Goutorbe M (2007) AFM characterization of ss-DNA probes immobilization: a sequence effect on surface organization. J. Phys. Conf. Ser. 61:658–662Google Scholar
  184. 184.
    Ando T, Uchihashi T, Fukuma T (2008) High-speed atomic force microscopy for nanovisualisation of dynamic biomolecular processes. Prog. Surf. Sci. 83:337–437Google Scholar
  185. 185.
    Tappura K, Vikholm-Lundin I, Albers W M (2007) Lipoate-based imprinted self-assembled molecular thin films for biosensor applications. Biosens. Bioelectron. 22:912–919Google Scholar
  186. 186.
    Hoa X D, Kirk A G, Tabrizian (2007) Towards integrated and sensitive surface plasmon resonance biosensors: a review of the recent progress. Biosens. Bioelectron. 23:151–160Google Scholar
  187. 187.
    Weber J, Albers W M, Tuppurainen J, Link M, Gabl R, Wersing W, Schreiter M (2006) Shear mode FBARs as highly sensitive liquid biosensors. Sens. Actuators A 128:84–88Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.VTT Technical Research Centre of FinlandMicrotechnologies and SensorsTampereFinland

Personalised recommendations