Skip to main content

Nano-scale Force Spectroscopy Applied to Biological Samples

  • Chapter
  • First Online:
Nano-Bio-Sensing

Abstract

This chapter covers the field of AFM-based force spectroscopy (FS) as applied to biological samples ranging from single molecules up to cells. After a brief introduction to atomic force microscopy and to the basic physical phenomena that are involved in FS measurements, we describe some FS experiments that have been conducted using biological systems of increasing complexities. Several experiments describing FS analysis of DNA, proteins, polysaccharides, and whole cells are successively presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashkin, A. (1980) Applications of laser-radiation pressure. Science 210: 1081–1088.

    Article  Google Scholar 

  2. Amblard, F., B. Yurke, A. Pargellis, et al. (1996) A magnetic manipulator for studying local rheology and micromechanical properties of biological systems. Review of Scientific Instruments 67: 818–827.

    Article  Google Scholar 

  3. Smith, S. B., L. Finzi and C. Bustamante (1992) Direct mechanical measurements of the elasticity of single DNA-molecules by using magnetic-beads. Science 258: 1122–1126.

    Article  Google Scholar 

  4. Ishijima, A., T. Doi, K. Sakurada, et al. (1991) Sub-piconewton force fluctuations of actomyosin in vitro. Nature 352: 301–306.

    Article  Google Scholar 

  5. Florin, E. L., V. T. Moy and H. E. Gaub (1994) Adhesion forces between individual ligand-receptorpairs. Science 264: 415–417.

    Article  Google Scholar 

  6. Binnig, G., C. F. Quate and C. Gerber (1986) Atomic force microscopy. Physical Review Letters 56: 930–933.

    Article  Google Scholar 

  7. Kasas, S., L. Alonso, P. Jacquet, et al. (2010) Microcontroller-driven fluid-injection system for atomic force microscopy. Review of Scientific Instruments 81.

    Google Scholar 

  8. Cappella, B. and G. Dietler (1999) Force-distance curves by atomic force microscopy. Surface Science Reports 34: 1–104.

    Article  Google Scholar 

  9. EssevazRoulet, B., U. Bockelmann and F. Heslot (1997) Mechanical separation of the complementary strands of DNA. Proceedings of the National Academy of Sciences of the United States of America 94: 11935–11940.

    Article  Google Scholar 

  10. Yan, H., S. H. Park, G. Finkelstein, et al. (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301: 1882–1884.

    Article  Google Scholar 

  11. Liu, Q. H., L. M. Wang, A. G. Frutos, et al. (2000) DNA computing on surfaces. Nature 403: 175–179.

    Article  Google Scholar 

  12. Rief, M., H. Clausen-Schaumann and H. E. Gaub (1999) Sequence-dependent mechanics of single DNA molecules. Nature Structural Biology 6: 346–349.

    Article  Google Scholar 

  13. Krautbauer, R., M. Rief and H. E. Gaub (2003) Unzipping DNA oligomers. Nano Letters 3: 493–496.

    Article  Google Scholar 

  14. Cluzel, P., A. Lebrun, C. Heller, et al. (1996) DNA: an extensible molecule. Science 271: 792–794.

    Google Scholar 

  15. Smith, S.B., Y. Cui, and C. Bustamante (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271: 795-799.

    Google Scholar 

  16. Cocco, S., J. Yan, J. Léger, D. Chatenay and J.F. Marko (2004) Overstretching and force-driven strand separation of double-helix DNA. Phys. Rev. E 70: 011910.

    Google Scholar 

  17. Sulkowska, J. I. and M. Cieplak (2007) Mechanical stretching of proteins – a theoretical survey of the Protein Data Bank. Journal of Physics-Condensed Matter 19.

    Google Scholar 

  18. Bizzarri, A. R. and S. Cannistraro (2009) Atomic force spectroscopy in biological complex formation: strategies and perspectives. Journal of Physical Chemistry B 113: 16449–16464.

    Article  Google Scholar 

  19. Livadaru, L., R. R. Netz and H. J. Kreuzer (2003) Stretching response of discrete semiflexible polymers. Macromolecules 36: 3732–3744.

    Article  Google Scholar 

  20. Bustamante, C., J. F. Marko, E. D. Siggia, et al. (1994) Entropic elasticity of lambda-phage DNA. Science 265: 1599–1600.

    Article  Google Scholar 

  21. West, D. K., D. J. Brockwell, P. D. Olmsted, et al. (2006) Mechanical resistance of proteins explained using simple molecular models. Biophysical Journal 90: 287–297.

    Article  Google Scholar 

  22. Schlierf, M. and M. Rief (2005) Temperature softening of a protein in single-molecule experiments. Journal of Molecular Biology 354: 497–503.

    Article  Google Scholar 

  23. Dougan, L., G. Feng, H. Lu, et al. (2008) Solvent molecules bridge the mechanical unfolding transition state of a protein. Proceedings of the National Academy of Sciences of the United States of America 105: 3185–3190.

    Article  Google Scholar 

  24. Evans, E. and K. Ritchie (1997) Dynamic strength of molecular adhesion bonds. Biophysical Journal 72: 1541–1555.

    Article  Google Scholar 

  25. Carrion-Vazquez, M., P. E. Marszalek, A. F. Oberhauser, et al. (1999) Atomic force microscopy captures length phenotypes in single proteins. Proceedings of the National Academy of Sciences of the United States of America 96: 11288–11292.

    Article  Google Scholar 

  26. Brockwell, D. J., E. Paci, R. C. Zinober, et al. (2003) Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nature Structural Biology 10: 731–737.

    Article  Google Scholar 

  27. Marszalek, P. E., H. B. Li, A. F. Oberhauser, et al. (2002) Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM. Proceedings of the National Academy of Sciences of the United States of America 99: 4278–4283.

    Article  Google Scholar 

  28. Oberhauser, A. F., P. K. Hansma, M. Carrion-Vazquez, et al. (2001) Stepwise unfolding of titin under force-clamp atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 98: 468–472.

    Article  Google Scholar 

  29. Fernandez, J. M. and H. B. Li (2004) Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303: 1674–1678.

    Article  Google Scholar 

  30. Garcia-Manyes, S., J. Brujic, C. L. Badilla, et al. (2007) Force-clamp spectroscopy of single-protein monomers reveals the individual unfolding and folding pathways of I27 and ubiquitin. Biophysical Journal 93: 2436–2446.

    Article  Google Scholar 

  31. Bullard, B., T. Garcia, V. Benes, et al. (2006) The molecular elasticity of the insect flight muscle proteins projectin and kettin. Proceedings of the National Academy of Sciences of the United States of America 103: 4451–4456.

    Article  Google Scholar 

  32. Cao, Y. and H. B. Li (2006) Single molecule force spectroscopy reveals a weakly populated microstate of the FnIII domains of tenascin. Journal of Molecular Biology 361: 372–381.

    Article  Google Scholar 

  33. Rief, M., J. Pascual, M. Saraste, et al. (1999) Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. Journal of Molecular Biology 286: 553–561.

    Article  Google Scholar 

  34. Brujic, J., R. I. Z. Hermans, S. Garcia-Manyes, et al. (2007) Dwell-time distribution analysis of polyprotein unfolding using force-clamp spectroscopy. Biophysical Journal 92: 2896–2903.

    Article  Google Scholar 

  35. Brown, A. E. X., R. I. Litvinov, D. E. Discher, et al. (2007) Forced unfolding of coiled-coils in fibrinogen by single-molecule AFM. Biophysical Journal 92: L39–L41.

    Article  Google Scholar 

  36. Rief, M., M. Gautel, F. Oesterhelt, et al. (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276: 1109–1112.

    Article  Google Scholar 

  37. Linke, W. A. and A. Grutzner (2008) Pulling single molecules of titin by AFM – recent advances and physiological implications. Pflugers Archiv-European Journal of Physiology 456: 101–115.

    Article  Google Scholar 

  38. Schwesinger, F., R. Ros, T. Strunz, et al. (2000) Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proceedings of the National Academy of Sciences of the United States of America 97: 9972–9977.

    Article  Google Scholar 

  39. Lee, C. K., Y. M. Wang, L. S. Huang, et al. (2007) Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein-ligand interaction. Micron 38: 446–461.

    Article  Google Scholar 

  40. Yersin, A., H. Hirling, P. Steiner, et al. (2003) Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 100: 8736–8741.

    Article  Google Scholar 

  41. Rief, M., F. Oesterhelt, B. Heymann, et al. (1997) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275: 1295–1297.

    Article  Google Scholar 

  42. Marszalek, P. E., H. B. Li and J. M. Fernandez (2001) Fingerprinting polysaccharides with single-molecule atomic force microscopy. Nature Biotechnology 19: 258–262.

    Article  Google Scholar 

  43. Sletmoen, M., G. Maurstad, P. Sikorski, et al. (2003) Characterisation of bacterial polysaccharides: steps towards single-molecular studies. Carbohydrate Research 338: 2459–2475.

    Article  Google Scholar 

  44. Abu-Lail, N. I. and T. A. Camesano (2003) Polysaccharide properties probed with atomic force microscopy. Journal of Microscopy-Oxford 212: 217–238.

    Article  MathSciNet  Google Scholar 

  45. Ikai, A., R. Afrin, A. Itoh, et al. (2002) Force measurements for membrane protein manipulation. Colloids and Surfaces B-Biointerfaces 23: 165–171.

    Article  Google Scholar 

  46. Muller, D. J., M. Krieg, D. Alsteens, et al. (2009) New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells. Current Opinion in Biotechnology 20: 4–13.

    Article  Google Scholar 

  47. Verbelen, C. and Y. F. Dufrene (2009) Direct measurement of Mycobacterium–fibronectin interactions. Integrative Biology 1: 296–300.

    Article  Google Scholar 

  48. Roduit, C., G. van der Goot, P. de Los Rios, et al. (2008) Elastic Membrane Heterogeneity of Living Cells Revealed by Stiff Nanoscale Membrane Domains. Biophysical Journal 94: 1521–1532.

    Google Scholar 

  49. Carrion-Vazquez, M., A. F. Oberhauser, T. E. Fisher, et al. (2000) Mechanical design of proteins-studied by single-molecule force spectroscopy and protein engineering. Progress in Biophysics and Molecular Biology 74: 63–91.

    Article  Google Scholar 

  50. Greenleaf, W. J., M. T. Woodside and S. M. Block (2007) High-resolution, single-molecule measurements of biomolecular motion. Annual Review of Biophysics and Biomolecular Structure 36: 171–190.

    Article  Google Scholar 

  51. Ikai, A. and R. Afrin (2003) Toward mechanical manipulations of cell membranes and membrane proteins using an atomic force microscope – an invited review. Cell Biochemistry and Biophysics 39: 257–277.

    Article  Google Scholar 

  52. Puchner, E. M. and H. E. Gaub (2009) Force and function: probing proteins with AFM-based force spectroscopy. Current Opinion in Structural Biology 19: 605–614.

    Article  Google Scholar 

  53. Afrin, R. and A. Ikai (2006) Force profiles of protein pulling with or without cytoskeletal links studied by AFM. Biochemical and Biophysical Research Communications 348: 238–244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandor Kasas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kasas, S., Roduit, C., Dietler, G. (2011). Nano-scale Force Spectroscopy Applied to Biological Samples. In: Carrara, S. (eds) Nano-Bio-Sensing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6169-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6169-3_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6168-6

  • Online ISBN: 978-1-4419-6169-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics