BAT: Backscatter Anything-to-Tag Communication



Computational RFID prototypes are limited by networking abstractions that impose narrow preconceptions about topologies and applications. These prototypes support programmability and integrate a wide array of sensors, which open the door to more varied applications. Implementing these on constrained platforms will need primitives that seamlessly support communication among tags and also with other devices. While overlays on top of existing protocols are possible, they introduce in ef?ciency because of packet formats designed explicitly for the tag inventory paradigm. This paper presents BAT, a networked system designed from the ground up to enable non-supply-chain RFID applications while carefully considering the unique constraints under which these platforms operate.


Frame Size Message Authentication Code Cryptographic Operation Universal Software Radio Peripheral High Clock Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Deepak Ganesan for his feedback on this work. This research was supported by the National Science Foundation CNS-0845874, CNS-0831244, and CNS-0923313.


  1. 1.
    H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. Knight, Jr., R. Nagpal, E. Rauch, G. J. Sussman, and R. Weiss. Amorphous Computing. Communications of the ACM, 43(5), May 2000.Google Scholar
  2. 2.
    M. Buettner, B. Greenstein, and A. Sample. Revisiting Smart Dust with RFID Sensor Networks. Hot Topics in Networks, Jan. 2008.Google Scholar
  3. 3.
    M. Buettner, R. Prasad, M. Philipose, and D. Wetherall. Recognizing Daily Activities with RFID-Based Sensors. In Proceedings of the 11th International Conference on Ubiquitous Computing (UbiComp), Oct. 2009.Google Scholar
  4. 4.
    M. Buettner and D. Wetherall. A Software Radio-based UHF RFID Reader for PHY/MAC Experimentation. In IEEE International Conference on RFID (RFID), 2011.Google Scholar
  5. 5.
  6. 6.
    L. Chen and C. Kudla. Identity Based Authenticated Key Agreement Protocols from Pairings. In Proceedings of the 16th IEEE Computer Security Foundations Workshop, July 2003.Google Scholar
  7. 7.
    M. Dorigo, G. Caro, and L. Gambardella. Ant Algorithms for Discrete Optimization. Artificial Life, 5(2), pp. 137–172, 1999.CrossRefGoogle Scholar
  8. 8.
    M. Dworkin. I. T. L. N. I. of Standards, and T. C. S. Division. Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication. US Department of Commerce, National Institute of Standards and Technology, 2005.Google Scholar
  9. 9.
    EPCglobal Inc. EPCglobal Class 1 Generation 2 Air Interface. V. 1.2.0, Oct. 2008.Google Scholar
  10. 10.
    Ettus Research. Universal Software Radio Peripheral.
  11. 11.
    N. Ferguson, B. Schneier, and T. Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley, New York, 2010.Google Scholar
  12. 12.
    J. Gummeson, P. Zhang, and D. Ganesan. Flit: A Bulk Transmission Protocol for RFID-Scale Sensors. In Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services. ACM, 2012.Google Scholar
  13. 13.
  14. 14.
    A. Juels. “Yoking-Proofs” for RFID Tags. In R. Sandhu and R. Thomas, editors, First International Workshop on Pervasive Computing and Communication Security. IEEE Press, Mar. 2004.Google Scholar
  15. 15.
    C. Karlof, N. Sastry, and D. Wagner. TinySec: A Link Layer Security Architecture for Wireless Sensor Networks. In Proceedings of ACM International Conference on Embedded Networked Sensor Systems, 2004.Google Scholar
  16. 16.
    L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2), May 1998.Google Scholar
  17. 17.
    R. Mullen, D. Monekosso, S. Barman, and P. Remagnino. A review of ant algorithms. Expert Systems with Applications, 36, pp. 9608–9617, 2009.CrossRefGoogle Scholar
  18. 18.
    G. Mulligan. The 6lowpan architecture. In Proceedings of the 4th workshop on Embedded networked sensors, EmNets ’07, pages 78–82, New York, NY, USA, 2007. ACM.Google Scholar
  19. 19.
    P. Nikitin, S. Ramamurthy, R. Martinez, and K. Rao. Passive Tag-to-Tag Communication. In IEEE International Conference on RFID (RFID), April 2012.Google Scholar
  20. 20.
    M. Reynolds. Beyond RFID: Peer to Peer, Semi-Active RFID Tags. NSF Workshop on Animal Tracking and Physiological Monitoring, 2007. Presentation.Google Scholar
  21. 21.
    R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In Proceedings of the Symposium on Cryptography and Information Security, Jan. 2000.Google Scholar
  22. 22.
    M. Salajegheh, S. S. Clark, B. Ransford, K. Fu, and A. Juels. CCCP: secure remote storage for computational RFIDs. In Proceedings of the 18th USENIX Security Symposium, Montreal, Canada, Aug. 2009.Google Scholar
  23. 23.
    A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R. Smith. Design of an RFID-based battery-free programmable sensing platform. IEEE Transactions on Instrumentation and Measurement, Nov. 2008.Google Scholar
  24. 24.
    J. Wang, H. Hassanieh, D. Katabi, and P. Indyk. Efficient and Reliable Low-Power Backscatter Networks. In Proceedings of the ACM SIGCOMM 2012 Conference, 2012.Google Scholar
  25. 25.
    E. Welbourne, K. Koscher, E. Soroush, M. Balazinska, and G. Borriello. Longitudinal Study of a Building-Scale RFID Ecosystem. In Proceedings of the International Conference on Mobile Systems, Applications, and Services, MobiSys ’09, June 2009.Google Scholar
  26. 26.
    H. Zhang, J. Gummeson, B. Ransford, and K. Fu. Moo: A Batteryless Computational RFID and Sensing Platform. Technical Report UM-CS-2011-020, Department of Computer Science, University of Massachusetts Amherst, Amherst, MA, June 2011.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.University of MassachusettsAmherstUSA

Personalised recommendations