SOCWISP: A 9 μA, Addressable Gen2 Sensor Tag for Biosignal Acquisition

  • Daniel Yeager
  • Fan Zhang
  • Azin Zarrasvand
  • Nicole George
  • Thomas Daniel
  • Brian Otis


Biosensors present exciting opportunities in novel medical and scientific applications. However, sensor tags presented to date cannot interface with practical sensors, lack addressability, and/or require a custom (high-cost) interrogator. Our tag provides these features via ultra-low-power circuitry including a low-noise biosignal amplifier, unique tag ID generator, calibration-free 3 MHz oscillator, and EPC C1 Gen2 protocol compatibility. In addition to design details and measurement data from the fabricated IC, we present in vivo muscle temperature measurement from an untethered in-flight hawkmoth.


Charge Pump Ring Oscillator Digital Core Bandgap Reference Successive Approximation Register 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by NSF ECS Award 0824265, the Komen Endowed Chair, the ONR MURI grant to TLD, and Intel Labs Seattle. This chapter is ©2010 IEEE reprinted, with permission, from IEEE Journal of Solid-State Circuits (JSSC), Vol. 45, No. 10, 2010.


  1. 1.
    U. Karthaus and M. Fischer, “Fully integrated passive UHF RFID transponder IC with 16.7-μW minimum RF input power,” IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp. 1602–1608, Oct. 2003.Google Scholar
  2. 2.
    A.P. Sample, D.J. Yeager, P.S. Powledge, A.V. Mamishev, and J.R. Smith, “Design of an RFID-based battery-free programmable sensing platform,” in IEEE Transactions on Instrumentation and Measurement, 2008.Google Scholar
  3. 3.
    S. Kim, J.-H. Cho, H.-S. Kim, H. Kim, H.-B. Kang, and S.-K. Hong, “An EPC Gen 2 compatible passive/semi-active UHF RFID transponder with embedded FeRAM and temperature sensor,” in Solid-State Circuits Conference, 2007. ASSCC ’07. IEEE Asian, Nov. 2007, pp. 135–138.Google Scholar
  4. 4.
    F. Kocer and M. Flynn, “A new transponder architecture with on-chip ADC for long-range telemetry applications,” IEEE Journal of Solid-State Circuits, vol. 41, no. 5, pp. 1142–1148, May 2006.CrossRefGoogle Scholar
  5. 5.
    H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata, S. Yamada, K. Mukaida, T. Ninomiya, T. Ohkawa, S. Masui, and K. Gotoh, “A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-μm technology,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 101–110, Jan. 2007.Google Scholar
  6. 6.
    V. Pillai, H. Heinrich, D. Dieska, P. Nikitin, R. Martinez, and K. Rao, “An ultra-low-power long range battery/passive RFID tag for UHF and microwave bands with a current consumption of 700 nA at 1.5 V,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 54, no. 7, pp. 1500–1512, July 2007.Google Scholar
  7. 7.
    R. Barnett, G. Balachandran, S. Lazar, B. Kramer, G. Konnail, S. Rajasekhar, and V. Drobny, “A passive UHF RFID transponder for EPC Gen 2 with − 14 dBm sensitivity in 0.13 μm CMOS,” in Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International, Feb. 2007, pp. 582–623.Google Scholar
  8. 8.
    H. Shen, L. Li, and Y. Zhou, “Fully integrated passive UHF RFID tag with temperature sensor for environment monitoring,” in ASIC, 2007. ASICON ’07. 7th International Conference on, Oct. 2007, pp. 360–363.Google Scholar
  9. 9.
    N. Cho, S.-J. Song, S. Kim, S. Kim, and H.-J. Yoo, “A 5.1-μW UHF RFID tag chip integrated with sensors for wireless environmental monitoring,” in Solid-State Circuits Conference, 2005. ESSCIRC 2005. Proceedings of the 31st European, Sept. 2005, pp. 279–282.Google Scholar
  10. 10.
    Z. Shenghua and W. Nanjian, “A novel ultra low power temperature sensor for UHF RFID tag chip,” in Solid-State Circuits Conference, 2007. ASSCC ’07. IEEE Asian, Nov. 2007, pp. 464–467.Google Scholar
  11. 11.
    F. Cilek, K. Seemann, D. Brenk, J. Essel, J. Heidrich, R. Weigel, and G. Holweg, “Ultra low power oscillator for UHF RFID transponder,” in Frequency Control Symposium, 2008 IEEE International, May 2008, pp. 418–421.Google Scholar
  12. 12.
    R. Barnett and J. Liu, “A 0.8 V 1.52 MHz MSVC relaxation oscillator with inverted mirror feedback reference for UHF RFID,” in Custom Integrated Circuits Conference, 2006. CICC ’06. IEEE, Sept. 2006, pp. 769–772.Google Scholar
  13. 13.
    C. Klapf, A. Missoni, W. Pribyl, G. Holweg, and G. Hofer, “Analyses and design of low power clock generators for RFID TAGs,” in Research in Microelectronics and Electronics, 2008. PRIME 2008. Ph.D., 22 2008-April 25 2008, pp. 181–184.Google Scholar
  14. 14.
    F. Song, J. Yin, H. Liao, and R. Huang, “Ultra-low-power clock generation circuit for EPC standard UHF RFID transponders,” Electronics Letters, vol. 44, no. 3, pp. 199–201, 31 2008.Google Scholar
  15. 15.
    I. Zalbide, J. Vicario, and I. Velez, “Power and energy optimization of the digital core of a Gen2 long range full passive RFID sensor tag,” in RFID, 2008 IEEE International Conference on, April 2008, pp. 125–133.Google Scholar
  16. 16.
    A. Ricci, M. Grisanti, I. De Munari, and P. Ciampolini, “Design of a 2 μW RFID baseband processor featuring an AES cryptography primitive,” in Electronics, Circuits and Systems, 2008. ICECS 2008. 15th IEEE International Conference on, 31 2008-Sept. 3 2008, pp. 376–379.Google Scholar
  17. 17.
    T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, and S. Otaka, “A 950 MHz rectifier circuit for sensor networks with 10 m-distance,” in Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International, Feb. 2005, pp. 256–597 Vol. 1.Google Scholar
  18. 18.
    G. De Vita and G. Iannaccone, “Design criteria for the RF section of UHF and microwave passive RFID transponders,” Microwave Theory and Techniques, IEEE Transactions on, vol. 53, no. 9, pp. 2978–2990, Sept. 2005.Google Scholar
  19. 19.
    R. Barnett, S. Lazar, and J. Liu, “Design of multistage rectifiers with low-cost impedance matching for passive RFID tags,” in Radio Frequency Integrated Circuits (RFIC) Symposium, 2006 IEEE, June 2006, pp. 4 pp.–.Google Scholar
  20. 20.
    J. Yi, W.-H. Ki, and C.-Y. Tsui, “Analysis and design strategy of UHF micro-power CMOS rectifiers for micro-sensor and RFID applications,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 54, no. 1, pp. 153–166, Jan. 2007.CrossRefGoogle Scholar
  21. 21.
    S. Mandal and R. Sarpeshkar, “Low-power CMOS rectifier design for RFID applications,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 54, no. 6, pp. 1177–1188, June 2007.CrossRefGoogle Scholar
  22. 22.
    H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata, S. Yamada, K. Mukaida, T. Ninomiya, T. Ohkawa, S. Masui, and K. Gotoh, “A passive UHF RFID tag LSI with 36.6% efficiency CMOS-only rectifier and current-mode demodulator in 0.35 μm FeRAM technology,” in Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International, Feb. 2006, pp. 1201–1210.Google Scholar
  23. 23.
    T. Le, K. Mayaram, and T. Fiez, “Efficient far-field radio frequency energy harvesting for passively powered sensor networks,” IEEE Journal of Solid-State Circuits, vol. 43, no. 5, pp. 1287–1302, May 2008.CrossRefGoogle Scholar
  24. 24.
    R. Glidden, C. Bockorick, S. Cooper, C. Diorio, D. Dressler, V. Gutnik, C. Hagen, D. Hara, T. Hass, T. Humes, J. Hyde, R. Oliver, O. Onen, A. Pesavento, K. Sundstrom, and M. Thomas, “Design of ultra-low-cost UHF RFID tags for supply chain applications,” Communications Magazine, IEEE, vol. 42, no. 8, pp. 140–151, Aug. 2004.CrossRefGoogle Scholar
  25. 25.
    Y. Su, J. Holleman, and B. Otis, “A digital 1.6 pJ/bit chip identification circuit using process variations,” IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp. 69–77, Jan. 2008.Google Scholar
  26. 26.
    J. Holleman, A. Mishra, C. Diorio, and B. Otis, “A micro-power neural spike detector and feature extractor in. 13 μm CMOS,” in IEEE Custom Integrated Circuits Conference, 2008. CICC 2008, 2008, pp. 333–336.Google Scholar
  27. 27.
    T. Denison, K. Consoer, W. Santa, A. Avestruz, J. Cooley, and A. Kelly, “A 2 uw 100 nv/rthz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE Journal of Solid-State Circuits, 2009.Google Scholar
  28. 28.
    K. Makinwa and J. Huijsing, “A wind sensor with an integrated low-offset instrumentation amplifier,” in Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE International Conference on, 2001.Google Scholar
  29. 29.
    R. Yazicioglu, P. Merken, R. Puers, and C. Van Hoof, “A 60 uw 60 nv/root hz readout front-end for portable biopotential acquisition systems,” IEEE Journal of Solid-State Circuits 2007.Google Scholar
  30. 30.
    A. Bennett, “Thermal dependence of muscle function,” American Journal of Physiology- Regulatory, Integrative and Comparative Physiology, vol. 247, no. 2, p. 217, 1984.Google Scholar
  31. 31.
    R. Josephson, “Contraction dynamics of flight and stridulatory muscles of tettigoniid insects,” Journal of Experimental Biology, vol. 108, no. 1, p. 77, 1984.Google Scholar
  32. 32.
    B. Heinrich, “Thermoregulation in endothermic insects,” Science, vol. 185, no. 4153, p. 747, 1974.Google Scholar
  33. 33.
    R. Stevenson and R. Josephson, “Effects of operating frequency and temperature on mechanical power output from moth flight muscle,” Journal of Experimental Biology, vol. 149, no. 1, p. 61, 1990.Google Scholar
  34. 34.
    Y. Kondoh and Y. Obara, “Anatomy of motoneurones innervating mesothoracic indirect flight muscles in the silkmoth, Bombyx mori,” Journal of Experimental Biology, vol. 98, no. 1, p. 23, 1982.Google Scholar
  35. 35.
    D. Daly, P. Mercier, M. Bhardwaj, A. Stone, Z. Aldworth, T. Daniel, J. Voldman, J. Hildebrand, and A. Chandrakasan, “A pulsed UWB receiver SoC for insect motion control,” IEEE Journal of Solid-State Circuits, vol. 45, no. 1, p. 153, 2010.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniel Yeager
    • 1
  • Fan Zhang
    • 1
  • Azin Zarrasvand
    • 1
  • Nicole George
    • 2
  • Thomas Daniel
    • 2
  • Brian Otis
    • 1
  1. 1.Department of Electrical EngineeringUniversity of WashingtonSeattleUSA
  2. 2.Department of BiologyUniversity of WashingtonSeattleUSA

Personalised recommendations