Qualitative Data in DEA

  • Wade D. CookEmail author
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 164)


In many real world applications involving performance measurement, it is necessary to deal with qualitative data factors. This chapter discusses the modeling of such factors within the DEA structure.


Data envelopment analysis  Efficiency  Rank position  Ordinal data  Qualitative data  


  1. Ali AI, Seiford L. Computational accuracy and infinitesimals in data envelopment analysis. Working paper. University of Massachusetts at Amherst, MA; 1993.Google Scholar
  2. Banker RD, Charnes A, Cooper WW. Some models for technical and scale efficiencies in data envelopment analysis. Manage Sci. 1984;30:1078–92.CrossRefGoogle Scholar
  3. Cook WD, Doyle J, Green R, Kress M. Eur J Oper Res. 1997;93(3):602–9.CrossRefGoogle Scholar
  4. Cook WD, Hababou M. Sales performance measurement in bank branches. OMEGA Int J Manage Sci. 2001;29:299–307.CrossRefGoogle Scholar
  5. Cook WD, Hababou M, Tuenter H. Multicomponent efficiency measurement and shared inputs in data envelopment analysis: an application to sales and service performance in bank branches. J Prod Anal. 2000;14(3):2000.CrossRefGoogle Scholar
  6. Cook WD, Hebner K. A multicriteria approach to country risk evaluation: With an example employing Japanese data. Int Rev Econ Finan. 1993a;2(4):327–48.CrossRefGoogle Scholar
  7. Cook WD, Hebner K. A multicriteria approach to mutual fund selection. Finan Serv Rev. 1993b;2(1):1–20.CrossRefGoogle Scholar
  8. Cook WD, Johnston DA, McCutcheon D. Implementation of robotics: identifying efficient implementers. OMEGA Int J Manage Sci. 1992;20:227–39.CrossRefGoogle Scholar
  9. Cook WD, Johnston DA. Evaluating suppliers of complex systems: A multiple criteria approach. J Oper Res Soc. 1992;43(11):1055–61.Google Scholar
  10. Cook WD, Kress M. A data envelopment model for aggregating preference rankings. Manage Sci. 1990;36(11):1302–10.CrossRefGoogle Scholar
  11. Cook WD, Kress M. A multiple criteria decision model with ordinal preference data. Eur J Oper Res. 1991;54(2):191–8.CrossRefGoogle Scholar
  12. Cook WD, Kress M. A multiple criteria composite index model for quantitative and qualitative data. Eur J Oper Res. 1994;78(3):367–79.CrossRefGoogle Scholar
  13. Cook WD, Kress M, Seiford L. On the use of ordinal data in Data Envelopment Analysis. J Oper Res Soc. 1993;44(2):133–40.Google Scholar
  14. Cook WD, Kress M, Seiford L. Data Envelopment Analysis in the presence of both quantitative and qualitative factors. J Oper Res Soc. 1996;47:945–53.Google Scholar
  15. Cook WD, Zhu J. Rank order data in DEA : a general framework. Eur J Oper Res. 2006;174:1021–38.CrossRefGoogle Scholar
  16. Cooper WW, Park KS, Yu G. IDEA and AR-IDEA: models for dealing with imprecise data in DEA. Manage Sci. 1999;45(4):597–607.CrossRefGoogle Scholar
  17. Cooper WW, Park KS, Yu G. IDEA (Imprecise Data Envelopment Analysis) with CMDs (column maximum decision making units). J Oper Res Soc. 2001;52:176–81.CrossRefGoogle Scholar
  18. Kim SH, Park CG, Park KS. An application of data envelopment analysis in telephone offices evaluation with partial data. Comput Oper Res. 1999;26:59–72.CrossRefGoogle Scholar
  19. Thrall RM. Duality, classification and slacks in DEA. Ann Oper Res. 1996;66:109–38.CrossRefGoogle Scholar
  20. Zhu J. Imprecise data envelopment analysis (IDEA): A review and improvement with an application. Eur J Oper Res. 2003;144:513–29.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Schulich School of BusinessYork UniversityTorontoCanada

Personalised recommendations