Advertisement

Traffic Simulation with SUMO – Simulation of Urban Mobility

  • Daniel KrajzewiczEmail author
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 145)

Abstract

SUMO is a microscopic road traffic simulation made available as open source under the GPL license. The complete suite includes tools for importing road networks, generating routes from different sources, and two versions of the traffic simulation itself, one started from the command line and one including a graphical user interface. The simulation uses the microscopic, space-continuous and time-discrete car-following model developed by S. Krauß and a lane-changing model developed within the work on the simulation. Traffic assignment is normally performed using the iterative approach formulated by C. Gawron, but further methods, such as a one-shot assignment method, exists. The traffic simulation offers a socket-based interface to external applications, allowing to interact with a running simulation online. Values and states of objects the simulation consists of can be both retrieved and changed. SUMO has been used within different projects both by the DLR and by external organizations. The software and documentation can be accessed at http://sumo.sf.net.

Keywords

Travel Time Road Network Traffic Light Lane Change Induction Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Krajzewicz D, Hertkorn G, Rössel C, Wagner P (2002) SUMO (Simulation of Urban MObility) – an open-source traffic simulation. In: Al-Akaidi A (ed) Proceedings of the 4th Middle East symposium on simulation and modelling (MESM20002), S. 183–187, 4th Middle East Symposium on Simulation and Modelling, Sharjah (United Arab Emirates), 2002–09, ISBN 90-77039-09-0Google Scholar
  2. Krajzewicz D, et al (2004) Recent extensions to the open source traffic simulation SUMO. In: Proceedings of the 10th world conference on transport research (on CD), WCTR04 – 10th World Conference on Transport Research, Istanbul, TurkeyGoogle Scholar
  3. SUMO (2001–2009) SUMO web pages. http://sumo.sf.net
  4. GNU.org. Gnu Public License. http://www.gnu.org/licenses/gpl.html. Accessed 9 Apr 2009
  5. Blanke K, Ehling M, Schwarz N (1996) Zeit im Blickfeld: Ergebnisse einer repräsentativen Zeitbudgeterhebung. Band 121 der Reihe Schriftenreihe des Bundesministeriums für Familie, Senioren, Frauen und Jugend. Kohlhammer, Stuttgart, 1996Google Scholar
  6. Hertkorn G, Kracht M (2002) Analysis of a large scale time use survey with respect to travel demand and regional aspects. International association for time use research (IATUR) – conference 2002, LisbonGoogle Scholar
  7. Hertkorn G, Wagner P (2004) Travel demand modelling based on time use data. 10th international conference on travel behaviour research, Luzern, 10–15 August 2004Google Scholar
  8. Hertkorn G (2004) “Mikroskopische Modellierung von zeitabhängiger Verkehrsnachfrage und von Verkehrsflussmustern;” Deutsches Zentrum für Luft- und Raumfahrt; Forschungsbericht 2004–29; Köln; http://elib.dlr.de/21014/01/fb_2004-29_v2.pdf
  9. Krajzewicz D et al (2005) Simulation of modern Traffic Lights Control Systems using the open source Traffic Simulation SUMO. In: Krüger J, Lisounkin A, Schreck, G. (eds) Proceedings of the 3rd industrial simulation conference 2005, EUROSIS-ETI, S. 299–302, 3rd Industrial Simulation Conference 2005, Berlin, Germany, ISBN 90-77381-18-XGoogle Scholar
  10. BMWi. “Verkehrsmanagement 2010” web pages. http://vm2010.de/web/index.php. Accessed 9 Apr 2009
  11. NAVTEQ. NAVTEQ web pages. http://www.navteq.com. Accessed 8 May 2009
  12. INVENT. INVENT project web pages. http://www.invent-online.de/. Accessed 9 Apr 2009
  13. Ehrenpfordt I, Höpfner M, et al (2006) Systematischer Test eines innovativen Verkehrsdatenerfassungssystems. In: Deutsche Messe AG [Hrsg.]: CeBIT in Motion – Forum for Telematics and Navigation, CeBIT in Motion – Forum for Telematics and Navigation, HannoverGoogle Scholar
  14. Höpfner M, Lemmer K, Ehrenpfordt I (2006) Validation of a GSM-based traffic monitoring system. In: ERTICO [Hrsg.]: ITS world conference 2006, 13th world congress and exhibition on intelligent transport systems and services, London, 8–12 Oct 2006Google Scholar
  15. TrafficOnline. TrafficOnline project web pages. http://www.trafficonline.de/. Accessed 9 Apr 2009
  16. Honomichl C (2008) Analyse und Simulation von Verkettbarkeitsmaßen in pseudonymer, mobiler Kommunikation, Diploma thesis. Technical University Darmstadt. 2008Google Scholar
  17. Morenz T (2008) iTranSIM – Simulation-based vehicle location. Master thesis, University of DublinGoogle Scholar
  18. OpenStreetMap. OpenStreetMap web site. http://www.openstreetmap.org/. Accessed 14 Apr 2009
  19. Krauß S (1998) Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics. Hauptabteilung Mobilität und Systemtechnik des DLR Köln. ISSN 1434-8454Google Scholar
  20. Brockfeld E, Kühne R, Wagner P (2004) Calibration and validation of microscopic traffic flow models. In: Transportation research board (ed) TRB 2004 annual meeting, S. 62–70, TRB Annual Meeting, Washington, DC, USAGoogle Scholar
  21. Brockfeld E, Wagner P (2004) Testing and benchmarking of microscopic traffic flow models. In: Proceedings of the 10th world conference on transport research, S. 775–776, WCTR04–10th World Conference on Transport Research, Istanbul, TurkeyGoogle Scholar
  22. Brockfeld E, Kühne R, Wagner P (2005) Calibration and validation of microscopic traffic flow models. Transportation research records, 1934, S. 179–187CrossRefGoogle Scholar
  23. Brilon W, et al (2005) Fortentwicklung und Bereitstellung eines bundeseinheitlichen Simulationsmodells für Bundesautobahnen. Forschung Straßenbau und Straßenverkehrstechnik, Heft 918. Herausgegeben vom Bundesministerium für Verkehr, Bau- und WohnungswesenGoogle Scholar
  24. Krajzewicz D (2009) Kombination von taktischen und strategischen Einflüssen in einer mikroskopischen Verkehrsflusssimulation, in Th. Jürgensohn, H. Kolrep (Hrsg.), Fahrermodellierung in Wissenschaft und Wirtschaft, 2. Berliner Fachtagung für Fahrermodellierung, Fortschrittsbericht des VDI in der Reihe 22 (Mensch-Maschine-Systeme), Nr.28, 104–115, VDI-Verlag, 2009, ISBN 978-3-18-302822-1Google Scholar
  25. Ehmans D (2001) Simulationsmodell des menschlichen Spurwechselverhaltens; Simulation model of human lane change behaviour. In: VDI/SAE/JSAE Gemeinschaftstagung, Der Fahrer im 21. Jahrhundert, Berlin 3.-4. Mai 2001.http://www.pelops.de/publikationen
  26. Gawron C (1998) Simulation-based traffic assignment – computing user equilibria in large street networks. PhD Dissertation, University of Köln, GermanyGoogle Scholar
  27. Behrisch M, Krajzewicz D, Wagner P, Wang Y-P (2008) Comparison of methods for increasing the performance of a DUA computation. In: Proceedings of DTA2008, DTA2008 international symposium on dynamic traffic assignment, Leuven, BelgiumGoogle Scholar
  28. Behrisch M, Krajzewicz D, Wang Y-P (2008) Comparing performance and quality of traffic assignment techniques for microscopic road traffic simulations. In: Proceedings of DTA2008, DTA2008 international symposium on dynamic traffic assignment, Leuven, BelgiumGoogle Scholar
  29. googletest. googletest web site. http://code.google.com/p/googletest/. Accessed 14 Apr 2009
  30. TextTest. TextTest web site. http://texttest.carmen.se/. Accessed 9 Apr 2009
  31. Wegener A, Piórkowski M, et al (2008) TraCI: an interface for coupling road traffic and network simulators. In: Proceedings of the 11th communications and networking simulation symposium (CNS'08), Ottawa, CanadaGoogle Scholar
  32. Wegener A, Hellbrück M, et al (2008) VANET simulation environment with feedback loop and its application to traffic light assistance. In: Proceedings of the 3rd IEEE workshop on automotive networking and applications, New Orleans, LA, USAGoogle Scholar
  33. Piórkowski M, Raya M, et al (2008) TraNS: realistic joint traffic and network simulator for VANETs. SIGMOBILE Mob Comput Commun Rev 12(1):31–33. ISSN 1559-1662. doi: http://doi.acm.org/10.1145/1374512.1374522 CrossRefGoogle Scholar
  34. EPFL (2008) Trans web site. http://trans.epfl.ch Accessed 05 July 2010
  35. Schäfer R-P, Thiessenhusen K-U, Brockfeld E, Wagner P (2002) A traffic information system by means of real-time floating-car data. In: ITS world congress, 11–14 Oct 2002Google Scholar
  36. Eissfeldt N (2004) Vehicle-based modelling of traffic. PhD thesis, University of Cologne, Cologne, GermanyGoogle Scholar
  37. iTETRIS. iTETRIS web site. http://www.ic-itetris.eu/. Accessed 14 Apr 2009
  38. INFRAS. Handbook emission factors for road transport. http://www.hbefa.net/. Accessed 14 Apr 2009
  39. Nota R, Barelds R, van Maercke D, van Leeuwen H (2005) Harmonoise WP 3 – Engineering method for road traffic and railway noise after validation and fine-tuning. Harmonoise Technical Report HAR32TR-040922-DGMR20 (Deliverable 18)Google Scholar
  40. Papaleontiou L, Dikaiakos M. D. (2009) TrafficModeler: A Graphical Tool for Programming Microscopic Traffic Simulators through High-level Abstractions. IEEE 69th Vehicular Technical Conference (VTC2009-Spring), April 26–29, 2009. Barcelona, SpainGoogle Scholar
  41. Creative Commons. Attribution-Noncommercial-Share Alike 3.0 license web site. http://creativecommons.org/licenses/by-nc-sa/3.0/. Accessed 14 Apr 2009

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institut für VerkehrssystemtechnikDeutsches Zentrum für Luft- und Raumfahrt e.V.Rutherfordstr. 2Germany

Personalised recommendations