Advertisement

Some Advanced Algorithms for VI Decomposition, MPCCs and EPECs

  • Steven A. Gabriel
  • Antonio J. Conejo
  • J. David Fuller
  • Benjamin F. Hobbs
  • Carlos Ruiz
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 180)

Abstract

In this chapter, we present several advanced algorithms that can be useful for the solution of some of the models discussed in this book.

Keywords

Master Problem Decomposition Algorithm Bender Decomposition Complementarity Constraint Mathematical Program With Complementarity Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Bautista, M.F. Anjos and A. Vannelli. Formulation of oligopolistic competition in AC power networks: an NLP approach. IEEE Transactions on Power Systems, 22(1):105-115, 2007.CrossRefGoogle Scholar
  2. 2.
    E. Celebi. Decomposition of variational inequalities with applications to Nash-Cournot models in time of use electricity markets. Ph.D. thesis, Department of Management Sciences, Faculty of Engineering, University of Waterloo, Waterloo ON, Canada, 2011.Google Scholar
  3. 3.
    Y. Chen, B.F. Hobbs, S. Leyffer and T.S. Munson. Leader-follower equilibria for electric power and NOx allowances markets. Computational Management Science, 3:307-330, 2006.CrossRefGoogle Scholar
  4. 4.
    W. Chung and J.D. Fuller. Subproblem approximation in Dantzig-Wolfe decomposition of variational inequality models with an application to a multicommodity economic equilibrium model. Operations Research 58(5):1318-1327, 2010.CrossRefGoogle Scholar
  5. 5.
    A.J. Conejo, E. Castillo, R. Mínguez and R. García-Bertrand. Decomposition Techniques in Mathematical Programming: Engineering and Science Applications. Springer, New York, 2006.Google Scholar
  6. 6.
    G.B. Dantzig and P. Wolfe. The decomposition algorithm for linear programs. Econometrica, 29(4):767-778, 1961.CrossRefGoogle Scholar
  7. 7.
    M.C. Ferris and T.S. Munson. PATH 4.6. In GAMS: the Solver Manuals. GAMS Development Corporation, Washington D.C., 2005. Available at www.gams.com.
  8. 8.
    J. Fortuny-Amat and B. McCarl. A representation and economic interpretation of a two-level programming problem. The Journal of the Operational Research Society, 32(9):783-792, 1981.Google Scholar
  9. 9.
    J.D. Fuller and W. Chung. Dantzig-Wolfe decomposition of variational inequalities. Computational Economics, 25:303-326, 2005.CrossRefGoogle Scholar
  10. 10.
    J.D. Fuller and W. Chung. Benders decomposition for a class of variational inequalities. European Journal of Operational Research, 185(1):76-91, 2007.CrossRefGoogle Scholar
  11. 11.
    S.A. Gabriel and J.D. Fuller. A Benders decomposition method for solving stochastic complementarity problems with an application in energy. Computational Economics, 35(4):301-329, 2010.CrossRefGoogle Scholar
  12. 12.
    S.A. Gabriel, A.S. Kydes and P. Whitman. The National Energy Modeling System: a large-scale energy-economic equilibrium model. Operations Research 49(1):14-25, 2001.CrossRefGoogle Scholar
  13. 13.
    X. Hu and D. Ralph. Using EPECs to model bilevel games in restructured electricity markets with locational prices. Operations Research 55(5):809-827, 2007.CrossRefGoogle Scholar
  14. 14.
    S.J. Kazempour and A.J. Conejo. Strategic generation investment under uncertainty via Benders decomposition. IEEE Transactions on Power Systems, 17(1):424-432, 2011.Google Scholar
  15. 15.
    S. Leyffer, G. López-Calva and J. Nocedal. Interior methods for mathematical programs with complementarity constraints. SIAM Journal on Optimization, 17(1):52-77, 2006.CrossRefGoogle Scholar
  16. 16.
    S. Leyffer and T. Munson. Solving multi-leader-common-follower games. Optimization Methods and Software, 25(4):601-623, 2010.CrossRefGoogle Scholar
  17. 17.
    J.P. Luna, C. Sagastizabal and M. Solodov. A class of Dantzig-Wolfe type decomposition methods for variational inequality problems. Unpublished manuscript, 2011. Downloaded from pages.cs.wisc.edu/˜solodov/lss11DW.pdf.Google Scholar
  18. 18.
    Z.-Q. Luo, J.-S. Pang and D. Ralph. Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge, 1996.CrossRefGoogle Scholar
  19. 19.
    F.H. Murphy and M.V. Mudrageda. A decomposition approach for a class of economic equilibrium models. Operations Research, 46(3):368-377, 1998.CrossRefGoogle Scholar
  20. 20.
    M. Patriksson. Simplicial Decomposition Algorithms. Encyclopedia of Optimization, Springer, 2009.Google Scholar
  21. 21.
    D. Ralph. Mathematical programs with complementarity constraints in traffic and telecommunications networks. Philosophical Transactions of the Royal Society, A, 366(1872):1973-1987, 13 June 2008Google Scholar
  22. 22.
    S. Scholtes and M. Stöhr. How stringent is the linear independence assumption for mathematical programs with complementarity constraints? Mathematics of Operations Research, 26(4):851-863, 2001.CrossRefGoogle Scholar
  23. 23.
    S. Siddiqui and S.A. Gabriel. An SOS1-based approach for solving MPECs with a natural gas market application, accepted at Networks and Spatial Economics, May 2012.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Steven A. Gabriel
    • 1
  • Antonio J. Conejo
    • 2
  • J. David Fuller
    • 3
  • Benjamin F. Hobbs
    • 4
  • Carlos Ruiz
    • 5
  1. 1.Department of Civil and Environmental EngineeringUniversity of MarylandCollege ParkUSA
  2. 2.University of Castilla – La ManchaCiudad RealSpain
  3. 3.Department of Management SciencesUniversity of WaterlooWaterlooCanada
  4. 4.Department of Geography and Environmental EngineeringThe Johns Hopkins UniversityBaltimoreUSA
  5. 5.European Foundation for New Energy – EDF École Centrale Paris and SupélecChâtenay-MalabryFrance

Personalised recommendations