Some Microeconomic Principles

  • Steven A. Gabriel
  • Antonio J. Conejo
  • J. David Fuller
  • Benjamin F. Hobbs
  • Carlos Ruiz
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 180)


In this chapter, we explain some useful principles of microeconomics for those readers with little or no background in the subject. Readers who have studied microeconomics may also benefit from this chapter, as we show how to construct several different kinds of models of markets, using optimization and complementarity techniques.


Demand Curve Supply Function Supply Curve Inverse Demand Function Mathematical Program With Equilibrium Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bertrand. Book review of Walras’s “Théorie mathématique de la richesse sociale” and of Cournot’s “Recherches sur les principles mathématiques de la théorie des richesses.” Journal de Savants, 67:499-508, 1883.Google Scholar
  2. 2.
    A.A. Cournot. Researches into the Mathematical Principles of the Theory of Wealth. (translated by Nathaniel T. Bacon, 1927) Macmillan, New York, 1838.Google Scholar
  3. 3.
    A. Harberger. Three basic postulates for applied welfare economics. Journal of Economic Literature, 9(3):785-797, 1971.Google Scholar
  4. 4.
    P.T. Harker. Generalized Nash games and quasi-variational inequalities. European Journal of Operational Research, 54(1):81-94, 1991.CrossRefGoogle Scholar
  5. 5.
    J.E. Harrington, B.F. Hobbs, J.-S. Pang, A. Liu and G. Roch. Collusive game solutions via optimization. Mathematical Programming, Series B, 104(2-3):407-435, 2005.CrossRefGoogle Scholar
  6. 6.
    H. Hashimoto. A spatial Nash equilibrium model. In Spatial Price Equilibria: Advances in Theory, Computation, and Application, P. T. Harker, Springer, 1985.Google Scholar
  7. 7.
    B.F. Hobbs. Network models of spatial oligopoly with an application to deregulation of electricity generation. Operations Research, 34(3):395-409, 1986.CrossRefGoogle Scholar
  8. 8.
    J.F. Nash. Non-cooperative games. The Annals of Mathematics, 54(2):286-295, 1951.CrossRefGoogle Scholar
  9. 9.
    R.S. Pindyck and D.L. Rubinfeld. Microeconomics. Prentice-Hall, Upper Saddle River, New Jersey, 2008.Google Scholar
  10. 10.
    S.W. Salant. Imperfect competition in the international energy market: a computerized Nash-Cournot model. Operations Research, 30(2):252-280, 1982.CrossRefGoogle Scholar
  11. 11.
    P.A. Samuelson. Spatial price equilibrium and linear programming. The American Economic Review, 42:283-303, 1952.Google Scholar
  12. 12.
    H. von Stackelberg. Marktform und Gleichgewicht. (Market Structure and Equilibrium). J. Springer, Vienna, 1934.Google Scholar
  13. 13.
    H.R. Varian. Intermediate Microeconomics: A Modern Approach. Norton, New York, 2006.Google Scholar
  14. 14.
    J.M. Wooldridge. Econometrics. South Western Cengage Learning, Mason, Ohio, 2009.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Steven A. Gabriel
    • 1
  • Antonio J. Conejo
    • 2
  • J. David Fuller
    • 3
  • Benjamin F. Hobbs
    • 4
  • Carlos Ruiz
    • 5
  1. 1.Department of Civil and Environmental EngineeringUniversity of MarylandCollege ParkUSA
  2. 2.University of Castilla – La ManchaCiudad RealSpain
  3. 3.Department of Management SciencesUniversity of WaterlooWaterlooCanada
  4. 4.Department of Geography and Environmental EngineeringThe Johns Hopkins UniversityBaltimoreUSA
  5. 5.European Foundation for New Energy – EDF École Centrale Paris and SupélecChâtenay-MalabryFrance

Personalised recommendations