Skip to main content

Nonlinear Tools

  • 919 Accesses

Abstract

This chapter presents tools that are available for the analysis of nonlinear properties of (some of the constituents of) the cochlea. It starts with a reference to properties of power law devices. In the next section it discusses properties of nonlinear oscillators in more detail than was done in Chap. 5.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4419-6117-4_9
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-4419-6117-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz M, Stegun IA (1968) Handbook of Mathematical Functions, 7th edn. Dover, New York

    Google Scholar 

  • Bennett WR (1933) New results in the calculation of modulation products. Bell System Techn J 12:228–243

    Google Scholar 

  • Bernstein SN (1922) Sur l’ordre de la meilleure approximation des functions continues par des polynomes. Mem Acad Royal Belg Sc 2(IV):1–103

    Google Scholar 

  • de Boer E (1991) Auditory physics. Physical principles in hearing theory. III. Physics Reports 203(3):125–231

    Google Scholar 

  • Broer HW, Takens F (2009) Dynamical Systems and Chaos. Springer, New York

    Google Scholar 

  • Davenport WB, Root WL (1958) Random Signals and Noise. McGraw-Hill, New York

    Google Scholar 

  • Duifhuis H (1989) Power-law nonlinearities: A review of some less familiar properties. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms: Structure, Function and Models, Plenum, New York, pp 395–403

    Google Scholar 

  • EOMlist (2002) Differential equation, ordinary. E.F. Mishchenko (originator), Encyclopedia of Mathematics. URL: http://www.encyclopediaofmath.org/index.php?title=Differential_equation,_ordinary&oldid=13954

  • Feuerstein E (1957) Intermodulation products for ν-law biased wave rectifiers for multiple frequency input. Quart Appl Math pp 183–192

    Google Scholar 

  • Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer-Verlag, New York

    Google Scholar 

  • Middleton D (1948) Some general results in the theory of noise through non-linear devices. Quart Appl Math 5:445–498

    Google Scholar 

  • Middleton D (1960) An Introduction to Statistical Communication Theory. McGraw-Hill, New York

    Google Scholar 

  • Nayfeh AH, Mook DT (1979) Nonlinear Oscillations. Wiley, New York

    Google Scholar 

  • van der Pol B (1934) The nonlinear theory of electric oscillations. Proc I R E 22:1051–1086

    CrossRef  Google Scholar 

  • Rice SO (1945) Mathematical analysis of random noise. IV. Noise through non-linear devices. Bell System Techn J 24:115–162

    Google Scholar 

  • Sternberg RL, Kaufman H (1953) A general solution of the two-frequency modulation product problem. I. J Math Phys 32:233–242

    Google Scholar 

  • Sternberg RL, Shipman JS, Kaufman H (1955) Tables of bennett functions for the two-frequency modulation product problem for the half-wave linear rectifier. Quart J Appl Math 8:457–467

    CrossRef  Google Scholar 

  • Stoker JJ (1950) Nonlinear Vibrations. Interscience Publishers (later: Wiley), New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrikus Duifhuis .

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Duifhuis, H. (2012). Nonlinear Tools. In: Cochlear Mechanics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6117-4_9

Download citation