Advertisement

Results

  • Hendrikus Duifhuis
Chapter

Abstract

In this chapter, we present example results from the NL cochlea, analyzed in the time domain. The examples cover three categories: level effects, combination tones, and onset delay effects. The first two topics were originally addressed in a project by Marc van den Raadt, the last two by Peter van Hengel.

Keywords

Group Delay Basilar Membrane Otoacoustic Emission Nonlinear Stiffness Distortion Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brass D, Kemp DT (1991) Time-domain observation of otoacoustic emissions during constant tone stimulation. J Acoust Soc Am 90:2415–2427PubMedCrossRefGoogle Scholar
  2. Broer HW, Takens F (2009) Dynamical Systems and Chaos. Appl. Math. Series 172, Springer, New YorkGoogle Scholar
  3. Duifhuis H (1989) Power-law nonlinearities: A review of some less familiar properties. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms: Structure, Function and Models, Plenum, New York, pp 395–403Google Scholar
  4. Duifhuis H (2000) Theoretical biophysics of the cochlea. Europian Biophys J 29:246, (abstract)Google Scholar
  5. Duifhuis H, van den Raadt MPMG (1997) Usefullness of the nonlinear residual response method. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar E (eds) Proceedings of the International Symposium on Diversity in Auditory Mechanics, World Scientific, Singapore, pp 226–232Google Scholar
  6. Duifhuis H, Hoogstraten HW, van Netten SM, Diependaal RJ, Bialek W (1985) Modelling the cochlear partition with coupled Van der Pol oscillators. In: Allen JB, Hall JL, Hubbard AE, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms, Springer, New York, pp 290–297Google Scholar
  7. van Hengel PWJ, Duifhuis H (2000) The generation of distorion products in a nonlinear transmission line model of the cochlea. In: Wada H, Takasaka T, Ikeda K, Ohyama K, Koike T (eds) Recent Developments in Auditory Mechanics, World Scientific, Singapore, pp 409–415CrossRefGoogle Scholar
  8. van Hengel PWJ, Duifhuis H, van den Raadt MPMG (1996) Spatial periodicity in the cochlea: The result of interaction of spontaneous emissions? J Acoust Soc Am 99:3566–3571PubMedCrossRefGoogle Scholar
  9. Kemp DT, Souter M (1988) A new rapid component in the cochlear response to brief electrical efferent stimulation: Cm and otoacoustic observations. Hear Res 34:49–62PubMedCrossRefGoogle Scholar
  10. Lynch S (2010) Dynamical systems: With applications using MapleTM, 2nd edn. Birkhäuser (Springer), BostonGoogle Scholar
  11. Moulin A, Kemp DT (1996) Multicomponent acoustic distortion product otoacoutic emission phase in humans. II. Implications for distorion product otoacoustic emssion generation. J Acoust Soc Am 100:1640–1662Google Scholar
  12. Nuttall AL, Dolan DF, Avinash G (1990) Measurements of basilar membrane tuning and distortion with laser doppler velocimetry. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing, Springer, Berlin, pp 288–295Google Scholar
  13. Papoulis A (1962) The Fourier Integral and its Applications. McGraw-Hill Book Company, New YorkGoogle Scholar
  14. van den Raadt MPMG, Duifhuis H (2011) A generalized van der P0l-oscillator cochlea model. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechnics and Biophysics of Hearing, Springer, Berlin, pp 227–234Google Scholar
  15. Robles L, Ruggero MA, Rich NC (1990) Two-tone distortion products in the basilar membrane of the chinchilla cochlea. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing, Springer, Berlin, pp 304–311, (disc: 312–313)Google Scholar
  16. Ruggero MA (1980) Systematic errors in indirect estimates of basilar membrane travel times. J Acoust Soc Am 67(2):707–710PubMedCrossRefGoogle Scholar
  17. Ruggero MA, Robles L, Rich NC, Recio A, Brown AM, Evans EF (1992) Basilar membrane responses to two-tone and broadband stimuli [and discussion]. Phil Trans R Soc Lond B 336(1278):307–315CrossRefGoogle Scholar
  18. Schneider S, Prijs VF, Schoonhoven R (1999) Group delays of distortion product otoacoustic emissions in the guinea pig. J Acoust Soc Am 105:2722–2730PubMedCrossRefGoogle Scholar
  19. Schneider S, Prijs VF, Schoonhoven R, van Hengel PWJ (2000) F1- versus f2-sweep group delays of distortion product otoacoustic emissions in the guinea pig; experimental results and theoretical predictions. In: Wada H, Takasaka T, Ikeda K, Ohyama K, Koike T (eds) Recent Development in Auditory Mechanics, World Scientific, Singapore, pp 360–366CrossRefGoogle Scholar
  20. Whitehead ML, Stagner BB, Martin GK, Lonsbury-Martin BL (1996) Visualization of the onset of distortion-product otoacoustic emissions, and measurement of their latency. J Acoust Soc Am 100:1663–1679PubMedCrossRefGoogle Scholar
  21. Wiggins S (2003) Unknown Title, 2nd edn. No. 2 in Texts in Applied Mathematics, Springer, New YorkGoogle Scholar
  22. Wilson JP (1980) The combination tone, 2f 1 − f 2, in psychophysics and ear-canal recordings. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological, and Behavioural Studies in Hearing, Delft University Press, Delft, pp 43–50(2)Google Scholar
  23. Withnell RN, Shafer LA, Talmadge CL (2003) Generation of DPOAEs in the guinea pig. Hear Res 178:106–117PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Faculty of Mathematics and Natural SciencesUniversity of GroningenGroningenThe Netherlands
  2. 2.BCN-NeuroImaging CenterGroningenThe Netherlands

Personalised recommendations