Nonlinear Auditory Phenomena (I) Knowledge Around 1980

  • Hendrikus Duifhuis


This chapter describes characteristics of auditory phenomena that appear to be attributable to a properly described nonlinear cochlea. In view of a reliable quantification, the discussion is here largely limited to relatively recent experimental data.


Acoustic Emission Auditory Nerve Tuning Curve Otoacoustic Emission Distortion Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bialek W, Wit HP (1984) Quantum limits to oscillator stability: theory and experiments on acoustic emissions from the human ear. Phys Letters 104A:173–178Google Scholar
  2. Dallos P (1973) The Auditory Periphery. Academic, New YorkGoogle Scholar
  3. Duifhuis H (1976) Cochlear nonlinearity and seond filter: Possible mechanism and implications. J Acoust Soc Am 59:408–423PubMedCrossRefGoogle Scholar
  4. Duifhuis H (1980) Level effects in psychophysical two-tone suppression. J Acoust Soc Am 67:914–927PubMedCrossRefGoogle Scholar
  5. Egan JP, Hake HW (1950) On the masking pattern of a simple auditory stimulus. J Acoust Soc Am 22:622–630CrossRefGoogle Scholar
  6. Engebretson AM, Eldredge DH (1968) Model for the nonlinear charateristics of cochlear potentials. J Acoust Soc Am 44:548–554PubMedCrossRefGoogle Scholar
  7. Flanagan JL (1962) Computational model for basilar-membrane displacement. J Acoust Soc Am 34:1370–1376CrossRefGoogle Scholar
  8. Geisler CD, Nuttall A (1997) Two-tone suppression of basilar membrane vibrations in the base of the guinea pig cochlea using “low-side” suppressors. J Acoust Soc Am 102:430–440PubMedCrossRefGoogle Scholar
  9. Glanville JD, Coles RRA, Sullivan BM (1971) A family with high-tonal tinnitus. J Laryngol Otol 85:1–10PubMedCrossRefGoogle Scholar
  10. Gold T (1948) Hearing. II. The physical basis of the action of the cochlea. Proc Royal Soc London, Series B, Biol Sc 135(881):492–498Google Scholar
  11. Goldstein JL (1967) Auditory nonlinearity. J Acoust Soc Am 41:676–689PubMedCrossRefGoogle Scholar
  12. Goldstein JL (1990) Modeling rapid waveform compression on the basilar membrane as multiple-bandpass-nonlinearity filtering. Hear Res 49:39–69PubMedCrossRefGoogle Scholar
  13. Goldstein JL, Kiang NYS (1968) Neural correlates of the aural combination tone 2f1-f2. Proc IEEE 56:981–992CrossRefGoogle Scholar
  14. Hall JL (1974) Two-tone distortion products in a nonlinear model of the basilar membrane. J Acoust Soc Am 56:1818–1823PubMedCrossRefGoogle Scholar
  15. Hall JL (1977) Two-tone suppression in a nonlinear model of the basilar membrane. J Acoust Soc Am 61:802–810PubMedCrossRefGoogle Scholar
  16. von Helmholtz HLF (1863) Die Lehre von den Tonempfindungen, 1st edn. Vieweg und Sohn, Braunschweig, english edition: On the Sensations of Tone, transl. by A.J. Ellis (1885) of 4th German edition (1877), publ. by Dover in 1954Google Scholar
  17. Hoke M, de Boer E, eds. (1979) Models of the Auditory System and Related Signal Processing Techniques. Scandinavian Audiology (Suppl. 9), Proc. from the workshop held at Münster, Germany, Sept. 1978Google Scholar
  18. Houtgast T (1972) Psychophysical evidence for lateral inhibition in hearing. J Acoust Soc Am 51:1885–1894PubMedCrossRefGoogle Scholar
  19. Johannesma PIM (1980) Narrow band filters and active resonators. Comments on papers by D. T. Kemp & R. A. Chum, and H. P. Wit & R. J. Ritsma. In: van den Brink G, Bilsen FA (eds) Psychophysical, physiological, and behavioural studies in hearing, Delft University Press, Delft, pp 62–63Google Scholar
  20. Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391PubMedCrossRefGoogle Scholar
  21. Kemp DT (1979a) Evidence of mechanical nonlinearity anf frequency selective wave amplification in the cochlea. Arch Otorhinolaryngol 224:37–45PubMedCrossRefGoogle Scholar
  22. Kemp DT (1979b) The evoked cochlear mechanical response and the auditory microstructure – evidence for a new element in cochlear mechanics. In: Hoke M, de Boer E (eds) Models of the Auditory System and Related Signal Processing Techniques, Stockholm, pp 35–47Google Scholar
  23. Kemp DT, Chum RA (1980) Observation of the generator mechanism of stimulus frequency acoustic emission – two-tone suppression. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological and Behavioural Studies in Hearing, Delft University Press, Delft, Netherlands, International Symposium on Hearing, pp 34–41/2Google Scholar
  24. Kim DO, Molnar CE, Pfeiffer RR (1973) A system of nonlinear differential equations modeling basilar membrane motion. J Acoust Soc Am 54:1517–1529PubMedCrossRefGoogle Scholar
  25. Kim DO, Littlefield WM, Pfeiffer RR, Molnar CE (1974) Combination tone 2f 1 − f 2 in responses of single auditory nerve fibers: evidence against essential nonlinearity. J Acoust Soc Am 55:467, (Abstract NN5)Google Scholar
  26. Kim DO, Molnar CE, Matthews JW (1980) Cochlear mechanics: Nonlinear behavior in two-tone responses as reflected in cochlear-nerve-fiber responses and ear-canal sound pressure. J Acoust Soc Am 67:1701–1721CrossRefGoogle Scholar
  27. Mayer AM (1876a) Mayer’s recent acoustical researches. Nature 14:318–320CrossRefGoogle Scholar
  28. Mayer AM (1876b) LXI. Researches in acoustics.–No. VIII. Phil Mag S 5 2:500–507Google Scholar
  29. Moulin A, Bera JC, Collet L (1991) Distortion product otoacaoustic emissions and sensorineural hearing loss. Audiology 33:305–326CrossRefGoogle Scholar
  30. Nelson DA, Schroder AC (1997) Linearized response growth inferred from growth-of-masking slopes in ears with cochlear hearing loss. J Acoust Soc Am 101:2186–2201PubMedCrossRefGoogle Scholar
  31. Nomoto M, Suga N, Katsuki Y (1964) Discharge patterns and inhibition of primary auditory nerve fibers in the monkey. J Neurophysiol 27:768–787PubMedGoogle Scholar
  32. Nuttall AL, Dolan DF, Avinash G (1990) Measurements of basilar membrane tuning and distortion with laser doppler velocimetry. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing, Springer, Berlin, pp 288–295Google Scholar
  33. Oxenham AJ, Plack CJ (1997) A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing. J Acoust Soc Am 101:3666–3675PubMedCrossRefGoogle Scholar
  34. Pfeiffer RR (1970) A model for two-tone inhibition of single cochlear nerve fibers. J Acoust Soc Am 48:1373–1378PubMedCrossRefGoogle Scholar
  35. Plomp R (1965) Detectability threshold for combination tones. J Acoust Soc Am 37:1373–1378CrossRefGoogle Scholar
  36. Probst R, Lonsbury-Martin BL, Martin GK (1991) A review of otoacoustic emissions. J Acoust Soc Am 89:2027–2067PubMedCrossRefGoogle Scholar
  37. Rhode WS (1971) Observation of vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 49:1218–1231PubMedCrossRefGoogle Scholar
  38. Rhode WS (1977) Some observations on two-tone interaction measured with the Mössbauer effect. In: Evans EF, WIlson JP (eds) Psychophysics and Physiology in Hearing, London, pp 27–38 (41)Google Scholar
  39. Robles L, Ruggero MA, Rich NC (1990) Two-tone distortion products in the basilar membrane of the chinchilla cochlea. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing, Springer, Berlin, pp 304–311, (disc: 312–313)Google Scholar
  40. Robles L, Ruggero MA, Rich NC (1991) Two-tone distortion in the basilar membrane of the cochlea. Nature 349:413–414PubMedCrossRefGoogle Scholar
  41. Ruggero MA, Robles L, Rich NC, Recio A, Brown AM, Evans EF (1992) Basilar membrane responses to two-tone and broadband stimuli [and discussion]. Phil Trans R Soc Lond B 336(1278):307–315CrossRefGoogle Scholar
  42. Rutten WLC (1980a) Evoked acoustic emissions from within normal and abnormal human ears: comparison with audiometric and electrocochleagraphic findings. Hear Res 2:263–271PubMedCrossRefGoogle Scholar
  43. Rutten WLC (1980b) Latencies of stimulated acoustic emissions in normal human ears. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological, and Behavioural Studies in Hearing, Delft University Press, Delft, pp 68–71, comment on Wit and Ritsma (1980) and Rutten (1980)Google Scholar
  44. Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J Acoust Soc Am 56:1835–1847PubMedCrossRefGoogle Scholar
  45. Sachs MB, Abbas PJ (1976) Phenomenological model for two-tone suppression. J Acoust Soc Am 60:1157–1163CrossRefGoogle Scholar
  46. Sachs MB, Kiang NYS (1968) Two-tone inhibition in auditory-nerve fibers. J Acoust Soc Am 43:1120–1128PubMedCrossRefGoogle Scholar
  47. Schroeder MR (1973) An integrable model of the basila membrane. J Acoust Soc Am 53:429–434PubMedCrossRefGoogle Scholar
  48. Shera CA, Zweig G (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047PubMedCrossRefGoogle Scholar
  49. Small AM (1959) Pure-tone masking. J Acoust Soc Am 31:1619–1625CrossRefGoogle Scholar
  50. Smits JTS, Duifhuis H (1982) Masking and partial masking in listeners with a high-frequency hearing loss. Audiology 21:310–324PubMedCrossRefGoogle Scholar
  51. Smoorenburg GF (1972a) Audibility region of combination tones. J Acoust Soc Am 52:603–614CrossRefGoogle Scholar
  52. Smoorenburg GF (1972b) Combination tones and their origin. J Acoust Soc Am 52:615–632CrossRefGoogle Scholar
  53. Smoorenburg GF, Gibson MM, Kitzes LM, Rose JE, Hind JE (1976) Correlates of combination tones observed in the response of neurons in the anteroventral cochlear nucleus of the cat. J Acoust Soc Am 59:945–962PubMedCrossRefGoogle Scholar
  54. Steinberg JC, Gardner MB (1937) The dependence of hearing impairement on sound intensity. J Acoust Soc Am 9:11–23CrossRefGoogle Scholar
  55. Talmadge CL, Tubis A, Wit HP, Long GR (1991) Are spontaneous otoacoustic emissions generated by self-sustained cochlear oscillators? J Acoust Soc Am 89:2391–2399PubMedCrossRefGoogle Scholar
  56. Vieth D (1805) Ueber Combinationstöne, in Beziehung auf einige Streitschriften über sie zweier englischen Physiker, Th. Young und Jo. Gough. Annal d Physik 21(3):265–314Google Scholar
  57. Vogten LLM (1978a) Low-level pure-tone masking: A comparison of “tuning curves” obtained with simultaneous and forward masking. J Acoust Soc Am 63:1520–1527PubMedCrossRefGoogle Scholar
  58. Vogten LLM (1978b) Simultaneous pure-tone masking: the dependence of masking asymmetries on intensity. J Acoust Soc Am 63:1509–1519PubMedCrossRefGoogle Scholar
  59. Wegel RL, Lane CE (1924) The auditory masking of one pure tone by another and its probable relation to the dynamics of the inner ear. Phys Rev 23:266–285CrossRefGoogle Scholar
  60. Wilson JP (1980a) The combination tone, 2f 1 − f 2, in psychophysics and ear-canal recordings. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological, and Behavioural Studies in Hearing, Delft University Press, Delft, pp 43–50(2)Google Scholar
  61. Wilson JP (1980b) Recording of the Kemp echo and tinnitus from the ear canal without averaging. J Physiol 298:8P–9PPubMedGoogle Scholar
  62. Wit HP, Ritsma RJ (1980) On the mechanism of the evoked cochlear mechanical response. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological, and Behavioural Studies in Hearing, Delft University Press, Delft, pp 53–60CrossRefGoogle Scholar
  63. Wit HP, Ritsma RJ (1983) Two aspects of cochlear acoustic emissions: response latency and minimum. In: de Boer E, Viergever MA (eds) Mechanics of Hearing, Martinus Nijhoff and Delft University Press, Delft, Netherlands, pp 101–107Google Scholar
  64. Zurek PM (1981) Spontaneous narrowband acoustic signals emitted by human ears. J Acoust Soc Am 69:514–523PubMedCrossRefGoogle Scholar
  65. Zwicker E (1955) Der Ungewöhnliche Amplitudengang der Nichtlinearen Verzerrungen des Ohres. Acustica 5:67–74Google Scholar
  66. Zwicker E (1979) A model describing nonlinearities in hearing by active processes with saturation at 40 dB. Biol Cybernetics 35:243–250CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Faculty of Mathematics and Natural SciencesUniversity of GroningenGroningenThe Netherlands
  2. 2.BCN-NeuroImaging CenterGroningenThe Netherlands

Personalised recommendations