Skip to main content

Emerging Cochlear Mechanics

Abstract

Cochlear mechanics is a field that relies strongly on fluid mechanics, linear and nonlinear signal processing, and additional mathematical tools. This is applied to a biological structure. A selection of useful—and possibly superfluous—prerequisites is presented in Appendix 8. Throughout, terminology and unit definitions follow the ANSI (2005) standard acoustical terminology.

Keywords

  • Acoustic Impedance
  • Basilar Membrane
  • Round Window
  • Volume Velocity
  • Cochlear Partition

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4419-6117-4_3
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-4419-6117-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aertsen AMHJ, Johannesma PIM (1980) Spectro-temporal receptive fields of auditory neurons in the grassfrog. Biol Cybernetics 38:223–234, URL http://dx.doi.org/10.1007/BF00337015, 10.1007/BF00337015

  • Allen JB (1977) Two-dimensional cochlear fluid model: New results. J Acoust Soc Am 61:110–119

    PubMed  CrossRef  CAS  Google Scholar 

  • Allen JB, Sohndi MM (1979) Cochlear macromechanics: Time domain solutions. J Acoust Soc Am 66:123–132

    PubMed  CrossRef  CAS  Google Scholar 

  • ANSI S (2005) Acoustical Terminology. American National Standards Institute, Inc., including 2005 updates

    Google Scholar 

  • de Boer E (1979) Short-wave world revisited: resonance in a two-dimensional cochlear model. Hear Res 1:253–281

    CrossRef  Google Scholar 

  • de Boer E (1980) Auditory physics. Physical principles in hearing theory. I. Physics Reports 62:87–174

    Google Scholar 

  • Bogert BP (1951) Determination of the effects of dissipation in the cochlear partition by means of a network representing the basilar membrane. J Acoust Soc Am 23:151–154

    CrossRef  Google Scholar 

  • Chadwick RS (1985) Three dimensional effects on low frequency cochlear mechnics. Mech Res Commun 12:181–186

    CrossRef  Google Scholar 

  • Cooper NP, Kemp DT (eds) (2008) The Biophysics of Hearing, Mechanics of Hearing, World Scientific, Singgapore

    Google Scholar 

  • Dallos P (1970) Low-level auditory characteristics: Species dependence. J Acoust Soc Am 48:489–499

    PubMed  CrossRef  CAS  Google Scholar 

  • Dallos P (1973) The Auditory Periphery. Academic, New York

    Google Scholar 

  • Diependaal RJ, Viergever MA (1989) Nonlinear and active two-dimensional cochlear models: Time-domain solution. J Acoust Soc Am 85:803–812

    PubMed  CrossRef  CAS  Google Scholar 

  • Duifhuis H (1988) Cochlear macromechanics. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. Neurobiological basis of hearing, A Neurosciences Institute Publication, Wiley, New York, chap 6, pp 189–211

    Google Scholar 

  • Flanagan JL (1962) Computational model for basilar-membrane displacement. J Acoust Soc Am 34:1370–1376

    CrossRef  Google Scholar 

  • Fletcher H (1951) On the dynamics of the cochlea. J Acoust Soc Am 23:637–645

    CrossRef  Google Scholar 

  • Gold T (1948) Hearing. II. The physical basis of the action of the cochlea. Proc Royal Soc London, Series B, Biol Sc 135(881):492–498

    Google Scholar 

  • Greenwood DD (1961) Critical bandwidth and the frequency coordinates of the basilar membrane. J Acoust Soc Am 33:1344–1356

    CrossRef  Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605

    PubMed  CrossRef  CAS  Google Scholar 

  • Hall JL (1974) Two-tone distortion products in a nonlinear model of the basilar membrane. J Acoust Soc Am 56:1818–1823

    PubMed  CrossRef  CAS  Google Scholar 

  • von Helmholtz HLF (1863) Die Lehre von den Tonempfindungen, 1st edn. Vieweg und Sohn, Braunschweig, english edition: On the Sensations of Tone, transl. by A.J. Ellis (1885) of 4th German edition (1877), publ. by Dover in 1954

    Google Scholar 

  • Holmes MH, Cole JD (1984) Cochlea mechanics: Analysis for a pure tone. J Acoust Soc Am 76:767–778

    PubMed  CrossRef  CAS  Google Scholar 

  • Hubbard AE, Geisler CD (1972) A hybrid-computer model of the cochlear partition. J Acoust Soc Am 51:1895–1903

    PubMed  CrossRef  CAS  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391

    PubMed  CrossRef  CAS  Google Scholar 

  • Kemp DT (1979) Evidence of mechanical nonlinearity anf frequency selective wave amplification in the cochlea. Arch Otorhinolaryngol 224:37–45

    PubMed  CrossRef  CAS  Google Scholar 

  • Lamb H (1895) Hydrodynamics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Lesser MB, Berkley DA (1972) Fluid mechanics of the cochlea. Part 1. J Fluid Mech 51:497–512

    CrossRef  Google Scholar 

  • Lien MD (1973) A mathematical model of the mechanics of the cochlea. PhD thesis, Washington Univ. School of Medicin, St. Louis

    Google Scholar 

  • Lighthill J (1981) Energy flow in the cochlea. J Fluid Mech 106:149–213

    CrossRef  Google Scholar 

  • Lynch TJ, Nedzelnitsky V, Peake WT (1982) Input impedance of the cochlea in cat. J Acoust Soc Am 72:108–130

    PubMed  CrossRef  Google Scholar 

  • Patterson RD, Robinson K, Holdworth J, McKeown D, Zhang C, Allerhand M (1991) Complex sounds and auditory images. In: Cazals Y, Demany L, Horner K (eds) Auditory physiology and perception, Pergamon Press, Oxford, pp 429–443

    Google Scholar 

  • Peterson LC, Bogert BP (1950) A dynamical theory of the cochlea. J Acoust Soc Am 22:369–381

    CrossRef  Google Scholar 

  • Puria S, Allen JB (1991) A parametric study of cochlear imput impedance. J Acoust Soc Am 89:287–309

    PubMed  CrossRef  CAS  Google Scholar 

  • Ranke OF (1950) Theory of operation of the cochlea: A contribution to the hydrodynamics of the cochlea. J Acoust Soc Am 22:772–777

    CrossRef  Google Scholar 

  • Rayleigh JWS (1896) The Theory of Sound, vol II, 2nd edn. MACMILLAN, London, [Dover edition: 1945]

    Google Scholar 

  • Siebert WM (1974) Ranke revisited – a simple short-wave cochlea model. J Acoust Soc Am 56:595–600

    CrossRef  Google Scholar 

  • Steele CR, Taber LA (1979a) Comparison of WKB and finite difference calculations for a two-dimensional cochlear model. J Acoust Soc Am 65:1001–1006

    PubMed  CrossRef  CAS  Google Scholar 

  • Steele CR, Taber LA (1979b) Comparison of WKB calculations and experimental results for three-dimensional cochlear models. J Acoust Soc Am 65:1007–1018

    PubMed  CrossRef  CAS  Google Scholar 

  • Viergever MA (1977) A two-dimensional model of the cochlea II. The heuristic approach and numerical results. J Eng Math 11:11–28

    Google Scholar 

  • Viergever MA (1980) Mechanics of the inner ear. PhD thesis, Delft University of Technology, Netherlands

    Google Scholar 

  • Zweig G, Lipes R, Pierce JR (1976) The cochlear compromise. J Acoust Soc Am 59:975–982

    PubMed  CrossRef  CAS  Google Scholar 

  • Zwislocki J (1948) Theorie der Schneckenmechanik: qualitative und quantitative Analyse. Acta Oto-Laryngol Suppl 72:1–72

    Google Scholar 

  • Zwislocki J (1950) Theory of the acoustical action of the cochlea. J Acoust Soc Am 22:778–784

    CrossRef  Google Scholar 

  • Zwislocki J (1953) Review of recent mathematical theories of cochlear dynamics. J Acoust Soc Am 25:743–751

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrikus Duifhuis .

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Duifhuis, H. (2012). Emerging Cochlear Mechanics. In: Cochlear Mechanics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6117-4_3

Download citation