Developments from 1950 to 1980



This chapter presents some details of technical and experimental progress that was made during the period 1950–1980


Hair Cell Auditory Nerve Outer Hair Cell Tuning Curve Hair Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbas PJ, Sachs MB (1976) Two-tone suppression in audtory-nerve fibers: extension of a stimulus response relationship. J Acoust Soc Am 59:112–122PubMedCrossRefGoogle Scholar
  2. Anderson DJ, Rose JE, Hind JE, Brugge JF (1971) Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. J Acoust Soc Am 49:1131–1139PubMedCrossRefGoogle Scholar
  3. Arthur RM, Pfeiffer RR, Suga N (1971) Properties of ‘two-tone inhibition’ in primary auditory neurones. J Physiol 212:593–609PubMedGoogle Scholar
  4. Dallos PJ (1969) Combination tone 2f l − f h in microphonic potentials. J Acoust Soc Am 46:1437–1444PubMedCrossRefGoogle Scholar
  5. Dancer A, Franke R (1980) Intracochlear pressure measurements in guinea pig. Hear Res 2:191–205PubMedCrossRefGoogle Scholar
  6. Eldredge DH (1967) Review of: The Organization of the Cochlear Receptor, by h spoendlin. J Acoust Soc Am 41:1386–1388, bookreviewGoogle Scholar
  7. Engström H, Ades HW, Jr JEH (1962) Structure and function of sensory hairs of the inner ear. J Acoust Soc Am 34:1356–1363Google Scholar
  8. Fletcher H (1940) Auditory patterns. Rev Mod Phys 22:47–65CrossRefGoogle Scholar
  9. Flock Å, Kimura R, Lundquist PG, Wersäll J (1962) Morphological basis of directional sensitivity of the outer hair cells in the organ of Corti. J Acoust Soc Am 34:1351–1355CrossRefGoogle Scholar
  10. Frank G, Hemmert W, Gummer AW (1999) Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. P N A S 96:4420–4425PubMedCrossRefGoogle Scholar
  11. Goblick TJ, Pfeiffer RR (1969) Time-domain measurements of cochlear nonlinearities using combination click stimuli. J Acoust Soc Am 46:924–938PubMedCrossRefGoogle Scholar
  12. Goldstein JL (1967) Auditory nonlinearity. J Acoust Soc Am 41:676–699PubMedCrossRefGoogle Scholar
  13. Goldstein JL, Kiang NYS (1968) Neural correlates of the aural combination tone 2f1-f2. Proc IEEE 56:981–992CrossRefGoogle Scholar
  14. von Helmholtz HLF (1863) Die Lehre von den Tonempfindungen, 1st edn. Vieweg und Sohn, Braunschweig, english edition: On the Sensations of Tone, transl. by A.J. Ellis (1885) of 4th German edition (1877), publ. by Dover in 1954.Google Scholar
  15. Hind JE, Rose JE, Brugge JF, Anderson DJ (1970) Two-tone masking effects in squirrel monkey nerve fibers. In: Plomp R, Smoorenburg GF (eds) Frequency Analysis and Periodicity Detection in Hearing, Sijthoff, LeidenGoogle Scholar
  16. Hodgkin AL, Huxley AF (1952a) The components of membrane conductance in the gaint axon of loligo. J Physiol 116:473–496PubMedGoogle Scholar
  17. Hodgkin AL, Huxley AF (1952b) Currents carried by sodium and potassium ions through the membrane of the gaint axon of loligo. J Physiol 116:449–472PubMedGoogle Scholar
  18. Hodgkin AL, Huxley AF (1952c) The dual effect of membrane potential on sodium conductance in the gaint axon of loligo. J Physiol 116:497–506PubMedGoogle Scholar
  19. Hodgkin AL, Huxley AF, Katz B (1952) Measurement of the current-voltage relatons in the membrane of the gaint axon of loligo. J Physiol 116:424–448PubMedGoogle Scholar
  20. Houtgast T (1972) Psychophysical evidence for lateral inhibition in hearing. J Acoust Soc Am 51(1885–1894)Google Scholar
  21. Kalinec F, Holley MC, Iwasa KH, Lim DJ, Kachar B (1992) A membrane-based force generation mechnism in auditory sensory cells. P N A S 89:8671–8675PubMedCrossRefGoogle Scholar
  22. Khanna SM (1986) Homodyne interferometer for basilar membrane measurements. Hear Res 23:9–26PubMedCrossRefGoogle Scholar
  23. Khanna SM, Johnson GW, Jacobs J (1986) Homodyne interferometer for basilar membrane measurements. II. Hardware and techniques. Hear Res 23:27–36Google Scholar
  24. Kiang NYS, Moxon EC (1974) Tails of tuning-curves in auditory nerve fibers. J Acoust Soc Am 55Google Scholar
  25. Kiang NYS, Watanabe T, Thomas EC, Clark LF (1965) Discharge patterns of single fibers in the cat’s auditory nerve. The M.I.T. Press, Cambridge, Mass.Google Scholar
  26. Kuiper JW (1956) The microphonic effect of the lateral line organ. PhD thesis, University of Groningen, The NetherlandsGoogle Scholar
  27. Liberman MC (1984) Single-neuron labeling and chronic cochlear pathology. I. Threshold shift and characteristic-frequency shift. Hear Res 16:33–41Google Scholar
  28. Liberman MC, Dodds LW (1984a) Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates. Hear Res 16:43–53Google Scholar
  29. Liberman MC, Dodds LW (1984b) Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res 16:55–74Google Scholar
  30. Liberman MC, Kiang NYS (1984) Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions. Hear Res 16:75–90Google Scholar
  31. Lim DJ, Melnick W (1971) Acoustic damage of the cochlea. Arch Otolaryng 94:294–305PubMedCrossRefGoogle Scholar
  32. Lundberg KH (2005) The history of analog computing. IEEE Contr Syst Mag 25(3):22–28CrossRefGoogle Scholar
  33. Minsky M (1961) Microscopy apparatus. Patent 3,013,467Google Scholar
  34. Nedzelnitsky V (1974) Measurement of sound pressure in the cochleae of anesthetized cats. In: Zwicker E, Terhardt E (eds) Facts and Models in Hearing, Springer, Berlin, pp 45–53CrossRefGoogle Scholar
  35. Nedzelnitsky V (1980) Sound pressures in the basal turn of the cat cochlea. J Acoust Soc Am 68:1676–1689PubMedCrossRefGoogle Scholar
  36. van Netten SM (1988) Laser interferometer microscope for the measurement of nanometer vibrational displacements of a light-scattering microscopic object. J Acoust Soc Am 83:1667–1674CrossRefGoogle Scholar
  37. Nomoto M, Suga N, Katsuki Y (1964) Discharge patterns and inhibition of primary auditory nerve fibers in the monkey. J Neurophysiol 27:768–787PubMedGoogle Scholar
  38. Plomp R (1965) Detectability threshold for combination tones. J Acoust Soc Am 37:1373–1378CrossRefGoogle Scholar
  39. Puria S, Peake WT, Rosowski JJ (1997) Sound pressure measurements in the vestibule of human-cadaver ears. J Acoust Soc Am 101:2754–2770PubMedCrossRefGoogle Scholar
  40. Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30:769–793PubMedGoogle Scholar
  41. Sachs MB, Kiang NYS (1968) Two-tone inhibition in auditory-nerve fibers. J Acoust Soc Am 43:1120–1128PubMedCrossRefGoogle Scholar
  42. Santos-Sacchi J (1992) On the frequency limit and phase of outer hair cell motility: effects of the membrane filter. J Neurosci 12:1906–1916PubMedGoogle Scholar
  43. Smoorenburg GF (1972) Audibility region of combination tones. J Acoust Soc Am 52:603–614CrossRefGoogle Scholar
  44. Smoorenburg GF, Gibson MM, Kitzes LM, Rose JE, Hind JE (1976) Correlates of combination tones observed in the response of neurons in the anteroventral cochlear nucleus of the cat. J Acoust Soc Am 59:945–962PubMedCrossRefGoogle Scholar
  45. Spoendlin H (1970) Structural basis of peripheral frequency analysis. In: Plomp R, Smoorenburg GF (eds) Frequency Analysis and Periodicity Detection in Hearing, AW Sijthoff, Leiden, pp 4–36Google Scholar
  46. Swets JA, Green DM, Tanner WP (1962) On the width of the critical band. J Acoust Soc Am 34:108–113CrossRefGoogle Scholar
  47. Wegel RL, Lane CE (1924) The auditory masking of one pure tone by another and its probable relation to the dynamics of the inner ear. Phys Rev 23:266–285CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Faculty of Mathematics and Natural SciencesUniversity of GroningenGroningenThe Netherlands
  2. 2.BCN-NeuroImaging CenterGroningenThe Netherlands

Personalised recommendations