Advertisement

An Introduction to Integer and Large-Scale Linear Optimization

  • J. Cole Smith
  • Sibel B. Sonuc
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 158)

Abstract

This chapter provides an introductory analysis of linear programming foundations and large-scale methods. The chapter begins by discussing the basics of linear programming modeling and solution properties, duality principles for linear programming problems, and extensions to integer programming methods. We then develop Benders decomposition, Dantzig-Wolfe decomposition, and Lagrangian optimization procedures in the context of network design and routing problems that arise in telecommunications operations research studies. The chapter closes with a brief discussion and list of basic references for other large-scale optimization algorithms that are commonly used to optimize telecommunications systems, including basis partitioning, interior point, and heuristic methods.

Keywords

Extreme Point Feasible Region Master Problem Valid Inequality Linear Program Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle River, NJ (1993)Google Scholar
  2. 2.
    Assad, A.A.: Multicommodity network flows – a survey. Networks 8(1), 37–91 (1978)CrossRefGoogle Scholar
  3. 3.
    Barahona, F., Anbil, R.: The volume algorithm: Producing primal solutions with a subgradient method. Mathematical Programming 87, 385–399 (2000)CrossRefGoogle Scholar
  4. 4.
    Barnhart, C., Hane, C.A., Vance, P.H.: Using branch-and-price-and-cut to solve origindestination integer multicommodity flow problems. Operations Research 48(2), 318–326 (2000)CrossRefGoogle Scholar
  5. 5.
    Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows, second edn. John Wiley & Sons, New York (1990)Google Scholar
  6. 6.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, second edn. John Wiley & Sons, New York (1993)Google Scholar
  7. 7.
    Benders, J.F.: Partitioning procedures for solving mixed variables programming problems. Numerische Mathematik 4, 238–252 (1962)CrossRefGoogle Scholar
  8. 8.
    Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Cambridge, MA (1999)Google Scholar
  9. 9.
    Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior point algorithm for large scale nonlinear programming. SIAM Journal on Optimization 9(4), 877–900 (1999)CrossRefGoogle Scholar
  10. 10.
    Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Operations Research 8(1), 101–111 (1960)CrossRefGoogle Scholar
  11. 11.
    Garg, M., Smith, J.C.: Models and algorithms for the design of survivable networks with general failure scenarios. Omega 36(6), 1057–1071 (2008)CrossRefGoogle Scholar
  12. 12.
    Hager, W.W., Hearn, D.W., Pardalos, P.M. (eds.): Large Scale Optimization: State of the Art. Springer, New York, NY (1994)Google Scholar
  13. 13.
    Held, M., Wolfe, P., Crowder, H.: Validation of subgradient optimization. Mathematical Programming 6, 62–88 (1974)CrossRefGoogle Scholar
  14. 14.
    Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston, MA (1996)Google Scholar
  15. 15.
    Kennington, J.L.: A survey of linear cost multicommodity network flows. Operations Research 26(2), 209–236 (1978)CrossRefGoogle Scholar
  16. 16.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Operations Research 21(2), 498–516 (1973)CrossRefGoogle Scholar
  17. 17.
    Mamer, J.W., McBride, R.D.: A decomposition-based pricing procedure for large-scale linear programs: An application to the linear multicommodity flow problem. Management Science 46(5), 603–709 (2000)Google Scholar
  18. 18.
    McBride, R.D.: Solving embedded generalized network flow problems. European Journal of Operational Research 21, 82–92 (1985)CrossRefGoogle Scholar
  19. 19.
    McBride, R.D., Mamer, J.W.: Implementing an LU factorization for the embedded network simplex algorithm. INFORMS Journal on Computing 16(2), 109–119 (2004)CrossRefGoogle Scholar
  20. 20.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. JohnWiley & Sons, New York (1999)Google Scholar
  21. 21.
    Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics, Philadelphia, PA (1994)Google Scholar
  22. 22.
    Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NPhard. Journal of Global Optimization 1(1), 15–23 (1991)CrossRefGoogle Scholar
  23. 23.
    Resende, M.G.C., de Sousa, J.P., Viana, A. (eds.): Metaheuristics: Computer decision-making. Kluwer Academic Publishers, Norwell, MA (2004)Google Scholar
  24. 24.
    Rosenberger, J.M., Olinick, E.V.: Robust tower location for code division multiple access networks. Naval Research Logistics 54(2), 151–161 (2007)CrossRefGoogle Scholar
  25. 25.
    Schrage, L.: Implicit representation of generalized variable upper bounds in linear programming. Mathematical Programming 14(1), 11–20 (1978)CrossRefGoogle Scholar
  26. 26.
    Sherali, H.D., Choi, G.: Recovery of primal solutions when using subgradient optimization methods to solve Lagrangian duals of linear programs. Operations Research Letters 19(3), 105–113 (1996)CrossRefGoogle Scholar
  27. 27.
    Sherali, H.D., Ulular, O.: A primal-dual conjugate subgradient algorithm for specially structured linear and convex programming problems. Applied Mathematics and Optimization 20, 193–221 (1989)CrossRefGoogle Scholar
  28. 28.
    Shor, N.Z.: Minimization Methods for Nondifferentiable Functions. Springer, Berlin (1985)Google Scholar
  29. 29.
    Smith, J.C., Schaefer, A.J., Yen, J.W.: A stochastic integer programming approach to solving a synchronous optical network ring design problem. Networks 44(1), 12–26 (2004)CrossRefGoogle Scholar
  30. 30.
    Sutter, A., Vanderbeck, F., Wolsey, L.A.: Optimal placement of add/drop multiplexers: Heurisic and exact algorithms. Operations Research 46(5), 719–728 (1998)CrossRefGoogle Scholar
  31. 31.
    Wright, S.J.: Primal-Dual Interior-Point Methods. Society for Industrial and Applied Mathematics, Philadelphia, PA (1997)Google Scholar

Copyright information

© Springer New York 2011

Authors and Affiliations

  1. 1.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations