Cross Layer Scheduling in Wireless Networks

  • Nitin Salodkar
  • Abhay Karandikar
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 158)


A wireless channel poses significant challenges to resource management due to multipath fading. In this chapter, we review the impact of wireless channels on the design of scheduling algorithms at the link and network layers. It has been well recognized now that significant performance gains can be obtained by designing channel aware scheduling algorithms. Various scheduling schemes catering to different Quality of Service (QoS) objectives such as maximizing throughput, minimizing delay, or minimizing energy have been proposed in the literature. Most of these algorithms can be formulated as control problems within the framework of a Constrained Markov Decision Processes. We examine some of the representative work in this area with a specific focus on centralized scheduling in a single cell scenario with a single antenna system.


Schedule Algorithm Fading Channel Power Allocation Channel State Information Queue Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, M., Borkar, V.S., Karandikar, A.: Structural Properties of Optimal Transmission Policies over a Randomly Varying Channel. IEEE Transactions on Automatic Control 53(6), 1476–1491 (2008)CrossRefGoogle Scholar
  2. 2.
    Altman, E.: Constrained Markov Decision Processes. Chapman and Hall/CRC Press, Boca Raton, FL (1999)Google Scholar
  3. 3.
    Andrews, M., Kumaran, K., Ramanan, K., Stolyar, A., Whiting, P., Vijayakumar, R.: Providing Quality of Service over a Shared Wireless Link. IEEE Communications Magazine 39 (1996)Google Scholar
  4. 4.
    Berggren, F., Jantti, R.: Asymptotically Fair Transmission Scheduling over Fading Channels. IEEE Transactions on Wireless Communication 3(1), 326–336 (2004)CrossRefGoogle Scholar
  5. 5.
    Berry, R.: Power and Delay Trade-offs in Fading Channels (2000). PhD Thesis, Massachusetts Institute of TechnologyGoogle Scholar
  6. 6.
    Berry, R.A., Gallager, R.G.: Communication over Fading Channels with Delay Constraints. IEEE Transactions on Information Theory 48(5), 1135–1149 (2002)CrossRefGoogle Scholar
  7. 7.
    Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1. Athena Scientific, Belmont, MA (1995)Google Scholar
  8. 8.
    Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont, MA (1999)Google Scholar
  9. 9.
    Bertsekas, D.P., Gallager, R.: Data Networks. Prentice Hall (1987)Google Scholar
  10. 10.
    Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific, Belmont, MA (1996)Google Scholar
  11. 11.
    Biglieri, E., Proakis, J., Shamai, S.: Fading Channels: Information-Theoretic and Communications Aspects. IEEE Transactions on Information Theory 44(6), 2619–2692 (1998)CrossRefGoogle Scholar
  12. 12.
    Borkar, V.S.: Convex Analytic Methods in Markov Decision Processes. In: E. A. Feinberg, A. Schwartz (Eds.) Handbook of Markov Decision Processes, pp. 347–375. Kluwer Academic Publishers, Dordrechet (2001)Google Scholar
  13. 13.
    Borkar, V.S.: An Actor-Critic Algorithm for Constrained Markov Decision Processes. Systems and Control Letters 54, 207–213 (2005)CrossRefGoogle Scholar
  14. 14.
    Borkar, V.S.: Stochastic Approximation - A Dynamical Systems Viewpoint. Hindustan Publishing Agency and Cambridge University Press (2008)Google Scholar
  15. 15.
    Borst, S., Whiting, P.: Dynamic Channel-Sensitive Scheduling Algorithms for Wireless Data Throughput Optimization. IEEE Transactions on Vehicular Technology 52(3), 569–586 (2002)Google Scholar
  16. 16.
    Chaponniere, E.F., Black, P., Holtzman, J.M., Tse, D.: Transmitter directed Multiple Receiver System using Path Diversity to Equitably Maximize Throughput (2002). U.S. Patent No. 6449490Google Scholar
  17. 17.
    Coello, C.A.C.: A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques. Knowledge and Information Systems 3(1), 269–308 (1999)Google Scholar
  18. 18.
    Djonin, D.V., Krishnamurthy, V.: Structural Results on Optimal Transmission Scheduling: A Constrained Markov Decision Process Approach. The IMA Volumes in Mathematics and its Applications 143 (2007)CrossRefGoogle Scholar
  19. 19.
    Goldsmith, A., Varaiya, P.: Capacity of Fading Channels with Channel Side Information. IEEE Transactions on Information Theory 43(6), 1986–1992 (1997)CrossRefGoogle Scholar
  20. 20.
    Goyal, M., Kumar, A., Sharma, V.: Power Constrained and Delay Optimal Policies for Scheduling Transmissions over a Fading Channel. In: Proceedings of IEEE INFOCOM, vol. 1, pp. 311–320 (2003)Google Scholar
  21. 21.
    Kelly, F.: Charging and Rate Control for Elastic Traffic. European Transactions on Telecommunications 8, 33–37 (1997)CrossRefGoogle Scholar
  22. 22.
    Kelly, F.P., Maulloo, A.K., Tan, D.K.H.: Rate Control for Communication Networks: Shadow Prices, Proportional Fairness and Stability. The Journal of the Operational Research Society 49(3), 237–252 (1998)Google Scholar
  23. 23.
    Knopp, R., Humblet, P.A.: Information Capacity and Power Control in Single-Cell Multiuser Communications. In: Proceedings of IEEE ICC, vol. 1, pp. 331–335. Seattle, USA (1995)Google Scholar
  24. 24.
    Kulkarni, S., Rosenberg, C.: Opportunistic Scheduling Policies for Wireless Systems with Short Term Fairness Constraints. In: Proceedings of IEEE GLOBECOM, vol. 1, pp. 533–537 (2003)Google Scholar
  25. 25.
    Kushner, H.J., Yin, G.G.: Stochastic Approximation Algorithms and Applications. Springer-Verlag, New York (1997)Google Scholar
  26. 26.
    LAN/MAN Committee: IEEE 802.16-2004: IEEE standard for Local and Metropolitan Area Networks - Part 16: Air Interface for Fixed Broadband Wireless Access Systems. IEEE Computer Society (2004)Google Scholar
  27. 27.
    Lau, V.K.N., Kwok, Y.K.R.: Channel-Adaptive Technologies and Cross-Layer Designs for Wireless Systems with Multiple Antennas. Wiley-Interscience (2006)Google Scholar
  28. 28.
    Li, L., Goldsmith, A.: Capacity and Optimal Resource Allocation for Fading Broadcast Channels: Part I: Ergodic Capacity. IEEE Transactions on Information Theory 47(3), 1083–1102 (2001)Google Scholar
  29. 29.
    Liu, X., Chong, E., Shroff, N.: Opportunistic Transmission Scheduling with Resource-Sharing Constraints inWireless Networks. IEEE Journal on Selected Areas in Communication 19(10), 2053–2064 (2001)CrossRefGoogle Scholar
  30. 30.
    Liu, X., Chong, E., Shroff, N.: Transmission Scheduling for Efficient Wireless Resource Utilization with Minimum-Performance Guarantees. In: Proceedings of IEEE VTC’2001, vol. 2, pp. 824–828 (2001)Google Scholar
  31. 31.
    Liu, Y., Knightly, E.: Opportunistic Fair Scheduling over Multiple Wireless Channels. In: Proceedings of IEEE INFOCOM, vol. 2, pp. 1106–1115. San Francisco, USA (2003)Google Scholar
  32. Magirou, V.F.: Stockpiling under Price Uncertainty and Storage Capacity Constraints. European Journal of Operational Research pp. 233–246 (1982)Google Scholar
  33. 33.
    McEliece, R., Stark,W.: Channels with Block Interference. IEEE Transactions on Information Theory 30, 44–53 (1984)CrossRefGoogle Scholar
  34. 34.
    Neely, M.J.: Optimal Energy and Delay Tradeoffs for Multi-user Wireless Downlinks. In: Proceedings of IEEE INFOCOM, pp. 1–13 (2006)Google Scholar
  35. 35.
    Neely, M.J., Modiano, E., Rohrs, C.: Power and Server Allocation in Multi-beam Satellite with Time Varying Channels. In: Proceedings of IEEE INFOCOM, pp. 138–152. San Francisco, USA (2002)Google Scholar
  36. 36.
    Puterman, M.: Markov Decision Processes. Wiley, New York (1994)CrossRefGoogle Scholar
  37. 37.
    Rajadhyaksha, G., Borkar, V.S.: Transmission Rate Control over Randomly Varying Channels. Probability in the Engineering and Informational Sciences 19(1), 73–82 (2005)Google Scholar
  38. 38.
    Rajan, D., Sabharwal, A., Aazhang, B.: Delay-Bounded Packet Scheduling of Bursty Traffic over Wireless Channels. IEEE Transactions on Information Theory 50(1), 125–144 (2004)CrossRefGoogle Scholar
  39. 39.
    Salodkar, N., Bhorkar, A., Karandikar, A., Borkar, V.S.: An On-Line Learning Algorithm for Energy Efficient Delay Constrained Scheduling over a Fading Channel. IEEE JSAC, Special Issue on Control and Communications 26(4), 732–742 (2008)Google Scholar
  40. 40.
    Salodkar, N., Karandikar, A.: An Indexing Scheduler for Delay Constrained Scheduling with Applications to IEEE 802.16. In: Proceedings of IEEE WCNC’2008, pp. 1471–1476 (2008)Google Scholar
  41. 41.
    Salodkar, N., Karandikar, A., Borkar, V.S.: A Stable On-line Algorithm for Energy Efficient Multi-user Scheduling. URL karandi/pubs dir/submitted/uplink tmc revised july2009.pdf. To appear in IEEE Transactions on Mobile Computing, 2010
  42. 42.
    Sawargi, Y.: Theory of Multiobjective Optimization. Academic Press, Orlando (1985)Google Scholar
  43. 43.
    Shakkottai, S., Stolyar, A.: Scheduling for Multiple Fows Sharing a Time-varying Channel: the Exponential Rule. AMS Translations Series 2 207 (2002)Google Scholar
  44. 44.
    Sklar, B.: Rayleigh Fading Channels in Mobile Digital Communication Systems. I. Characterization. IEEE Communications Magazine 35(7), 90–100 (1997)Google Scholar
  45. 45.
    Sklar, B.: Rayleigh Fading Channels in Mobile Digital Communication Systems. II. Mitigation. IEEE Communications Magazine 35(7), 102–109 (1997)CrossRefGoogle Scholar
  46. 46.
    Spall, J.C.: Introduction to Stochastic Search and Optimization. Wiley (2003)Google Scholar
  47. 47.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge MA, USA (1998)Google Scholar
  48. 48.
    Tassiulas, L., Ephremides, A.: Dynamic Server Allocation to Parallel Queues with Randomly Varying Connectivity. IEEE Transactions on Information Theory 39(2), 466–478 (1993)CrossRefGoogle Scholar
  49. 49.
    Tse, D.: Optimal Power Allocation over Parallel Gaussian Broadcast Channels. In: Proceedings of IEEE ISIT, p. 27 (1997)Google Scholar
  50. 50.
    Tse, D., Hanly, S.: Multi-access Fading Channels - Part I: Polymatroid Structure, Optimal Resource Allocation and Throughput Capacities. IEEE Transactions on Information Theory 44(7), 2796–2815 (1998)CrossRefGoogle Scholar
  51. 51.
    Tse, D., Hanly, S.: Multi-access Fading Channels - Part II: Delay-Limited Capacities. IEEE Transactions on Information Theory 44(7), 2816–2831 (1998)Google Scholar
  52. 52.
    Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press (2005)Google Scholar
  53. 53.
    W. B. Powell: Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley-Interscience (2007)Google Scholar
  54. 54.
    Wang, H., Mandayam, N.: A Simple Packet Transmission Scheme for Wireless Data over Fading Channels. IEEE Transcations on Communications 52(7), 1055–1059 (2004)CrossRefGoogle Scholar
  55. 55.
    Wang, H.S., Moayeri, N.: Finite-State Markov Channel – A Useful Model for Radio Communication Channels. IEEE Transactions on Vehicular Technology 44(1), 163–171 (1995)CrossRefGoogle Scholar
  56. 56.
    Yeh, E., Cohen, A.: Delay Optimal Rate Allocation in Multiaccess Fading Communications. In: Proceedings of IEEE Workshop on Multimedia Signal Processing, pp. 404–407 (2002)Google Scholar

Copyright information

© Springer New York 2011

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology BombayMumbaiIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations