Skip to main content

Interleukin-24 Gene Therapy for Melanoma

  • Chapter
  • First Online:
Gene-Based Therapies for Cancer

Abstract

The interleukin (IL) -24 protein encoded by melanoma differentiation associated-7 (mda-7) gene is a novel IL-10 family cytokine with unique tumor-specific apoptotic and anti-angiogenic properties. Additional role(s) for IL-24, including the regulation of skin inflammation, as suggested by recent data, provide a teleologic role for this melanocyte- and monocyte-produced molecule. Previous studies by our group led to a Phase I trial for local adenoviral therapy delivery in advanced solid tumor patients. These clinical studies employed gene therapy with adenoviral vector–mediated delivery of mda-7/IL-24 (Ad-mda-7/IL-24) and clearly demonstrated a bystander apoptotic effect resulting from IL-24 protein production in injected tumor lesion. While these studies are useful for “proof of principle” for IL-24, we now realize that we must devise means to use this same product, IL-24, systemically to achieve therapeutic success in patients with melanoma. Therefore, gene therapy with a nanoparticle delivery vehicle is now being pursued. We propose that MDA7/IL-24 is a major skin-derived tumor suppressor/cytokine that has profound significance as a biotherapeutic for melanoma and possibly other cancers.

Professor, Department of Experimental Therapeutics; Francis King Black Memorial Professor of Cancer Research; Deputy Head for Research Affairs, Division of Cancer Medicine; and Co-Director, Melanoma Research Program; The University of Texas MD Anderson Cancer Center

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson CM, Buzaid AC, Legha SS (1995) Systemic treatments for advanced cutaneous melanoma. Oncology. 9:1149–1158.

    PubMed  CAS  Google Scholar 

  • Atkins MB (1997) The treatment of metastatic melanoma with chemotherapy and biologics [see comments]. Curr Opin Oncol. 9:205–213.

    PubMed  CAS  Google Scholar 

  • Bedikian AY, Millward M, Pehamberger H et al. (2006) Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol. 24:4738–4745.

    PubMed  CAS  Google Scholar 

  • Blumberg H, Conklin D, Xu WF et al. (2001) Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell. 104:9–19.

    PubMed  CAS  Google Scholar 

  • Bocangel D, Zheng M, Mhashilkar A et al. (2006) Combinatorial synergy induced by adenoviral-mediated mda-7 and Herceptin in Her-2+ breast cancer cells. Cancer Gene Ther. 13:958–968.

    PubMed  CAS  Google Scholar 

  • Caudell EG, Mumm JB, Poindexter N et al. (2002) The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. J Immunol. 168:6041–6046.

    PubMed  CAS  Google Scholar 

  • Chada S, Bocangel D, Ramesh R et al. (2005) mda-7/IL24 kills pancreatic cancer cells by inhibition of the Wnt/PI3K signaling pathways: identification of IL-20 receptor-mediated bystander activity against pancreatic cancer. Mol Ther. 11:724–733.

    PubMed  CAS  Google Scholar 

  • Chada S, Menander KB, Bocangel D et al. (2008) Cancer targeting using tumor suppressor genes. Front Biosci. 13:1959–1967.

    PubMed  CAS  Google Scholar 

  • Chada S, Mhashilkar AM, Liu Y et al. (2006) mda-7 gene transfer sensitizes breast carcinoma cells to chemotherapy, biologic therapies and radiotherapy: correlation with expression of bcl-2 family members. Cancer Gene Ther. 13:490–502.

    PubMed  CAS  Google Scholar 

  • Chada S, Mhashilkar AM, Ramesh R et al. (2004a) Bystander activity of Ad-mda7: human MDA-7 protein kills melanoma cells via an IL-20 receptor-dependent but STAT3-independent mechanism. Mol Ther. 10:1085–1095.

    PubMed  CAS  Google Scholar 

  • Chada S, Sutton RB, Ekmekcioglu S et al. (2004b) MDA-7/IL-24 is a unique cytokine-tumor suppressor in the IL-10 Family. Int Immunopharmacol. 4:649–667.

    PubMed  CAS  Google Scholar 

  • Chapman PB, Einhorn LH, Meyers ML et al. (1999) Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J Clin Oncol. 17:2745–2751.

    PubMed  CAS  Google Scholar 

  • Crook K, Stevenson BJ, Dubouchet M et al. (1998) Inclusion of cholesterol in DOTAP transfection complexes increases the delivery of DNA to cells in vitro in the presence of serum. Gene Ther. 5:137–143.

    PubMed  CAS  Google Scholar 

  • Cunningham CC, Chada S, Merritt JA et al. (2005) Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I study. Mol Ther. 11:149–159.

    PubMed  CAS  Google Scholar 

  • Deng WG, Wu G, Ueda K et al. (2008) Enhancement of antitumor activity of cisplatin in human lung cancer cells by tumor suppressor FUS1. Cancer Gene Ther. 15:29–39.

    PubMed  CAS  Google Scholar 

  • Dong CY, Zhang F, Duan YJ et al. (2008) mda-7/IL-24 inhibits the proliferation of hematopoietic malignancies in vitro and in vivo. Exp Hematol. 36:938–946.

    PubMed  CAS  Google Scholar 

  • Dumoutier L, Leemans C, Lejeune D et al. (2001) Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol. 167:3545–3549.

    PubMed  CAS  Google Scholar 

  • Ekmekcioglu S, Ellerhorst J, Mhashilkar AM et al. (2001) Down-regulated melanoma differentiation associated gene (mda-7) expression in human melanomas. Int J Cancer. 94:54–59.

    PubMed  CAS  Google Scholar 

  • Ekmekcioglu S, Ellerhorst JA, Mumm JB et al. (2003) Negative association of melanoma differentiation-associated gene (mda-7) and inducible nitric oxide synthase (iNOS) in human melanoma: MDA-7 regulates iNOS expression in melanoma cells. Mol Cancer Ther. 2:9–17.

    PubMed  CAS  Google Scholar 

  • Ekmekcioglu S, Mumm JB, Udtha M et al. (2008) Killing of human melanoma cells induced by activation of class I interferon-regulated signaling pathways via MDA-7/IL-24. Cytokine. 43:34–44.

    PubMed  CAS  Google Scholar 

  • Ellerhorst JA, Prieto VG, Ekmekcioglu S et al. (2002) Loss of MDA-7 expression with progression of melanoma. J Clin Oncol. 20:1069–1074.

    PubMed  Google Scholar 

  • Eton O, Legha SS, Bedikian AY et al. (2002) Sequential biochemotherapy versus chemotherapy for metastatic melanoma: results from a phase III randomized trial. J Clin Oncol. 20:2045–2052.

    PubMed  CAS  Google Scholar 

  • Fisher PB, Gopalkrishnan RV, Chada S et al. (2003) mda-7/IL-24, a novel cancer selective apoptosis inducing cytokine gene: from the laboratory into the clinic. Cancer Biol Ther. 2:S23-S37.

    PubMed  CAS  Google Scholar 

  • Gaensler KM, Tu G, Bruch S et al. (1999) Fetal gene transfer by transuterine injection of cationic liposome-DNA complexes. Nat Biotechnol. 17:1188–1192.

    PubMed  CAS  Google Scholar 

  • Gallagher G, Dickensheets H, Eskdale J et al. (2000) Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes Immun. 1:442–450.

    PubMed  CAS  Google Scholar 

  • Gopalan B, Litvak A, Sharma S et al. (2005) Activation of the Fas-FasL signaling pathway by MDA-7/IL-24 kills human ovarian cancer cells. Cancer Res. 65:3017–3024.

    PubMed  CAS  Google Scholar 

  • Gopalan B, Shanker M, Chada S et al. (2007) MDA-7/IL-24 suppresses human ovarian carcinoma growth in vitro and in vivo. Mol Cancer. 6:11–20.

    PubMed  Google Scholar 

  • Gopalan B, Shanker M, Scott A et al. (2008) MDA-7/IL-24, a novel tumor suppressor/cytokine is ubiquitinated and regulated by the ubiquitin-proteasome system, and inhibition of MDA-7/IL-24 degradation enhances the antitumor activity. Cancer Gene Ther. 15:1–8.

    PubMed  CAS  Google Scholar 

  • Hortobagyi GN, Hung MC, Lopez-Berestein G (1998) A Phase I multicenter study of E1A gene therapy for patients with metastatic breast cancer and epithelial ovarian cancer that overexpresses HER-2/neu or epithelial ovarian cancer. Hum Gene Ther. 9:1775–1798.

    PubMed  CAS  Google Scholar 

  • Hortobagyi GN, Ueno NT, Xia W et al. (2001) Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial. J Clin Oncol. 19:3422–3433.

    PubMed  CAS  Google Scholar 

  • Inoue S, Branch CD, Gallick GE et al. (2005) Inhibition of Src kinase activity by Ad-mda7 suppresses vascular endothelial growth factor expression in prostate carcinoma cells. Mol Ther. 12:707–715.

    PubMed  CAS  Google Scholar 

  • Inoue S, Shanker M, Miyahara R et al. (2006) MDA-7/IL-24-based cancer gene therapy: translation from the laboratory to the clinic. Curr Gene Ther. 6:73–91.

    PubMed  CAS  Google Scholar 

  • Ishikawa S, Nakagawa T, Miyahara R et al. (2005) Expression of MDA-7/IL-24 and its clinical significance in resected non-small cell lung cancer. Clin Cancer Res. 11:1198–1202.

    PubMed  CAS  Google Scholar 

  • Ito I, Began G, Mohiuddin I et al. (2003) Increased uptake of liposomal-DNA complexes by lung metastases following intravenous administration. Mol Ther. 7:409–418.

    PubMed  CAS  Google Scholar 

  • Ito I, Ji L, Tanaka F et al. (2004a) Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo. Cancer Gene Ther. 11:733–739.

    PubMed  CAS  Google Scholar 

  • Ito I, Saeki T, Mohuiddin I et al. (2004b) Persistent transgene expression following intravenous administration of a liposomal complex: role of interleukin-10-mediated immune suppression. Mol Ther. 9:318–327.

    PubMed  CAS  Google Scholar 

  • Ives NJ, Stowe RL, Lorigan P et al. (2007) Chemotherapy compared with biochemotherapy for the treatment of metastatic melanoma: a meta-analysis of 18 trials involving 2,621 patients. J Clin Oncol. 25:5426–5434.

    PubMed  CAS  Google Scholar 

  • Jiang H, Lin JJ, Su ZZ et al. (1995) Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene. 11:2477–2486.

    PubMed  CAS  Google Scholar 

  • Jiang H, Su ZZ, Lin JJ et al. (1996) The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Natl Acad Sci U S A. 93:9160–9165.

    PubMed  CAS  Google Scholar 

  • Kafri T, Morgan D, Krahl T et al. (1998) Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy. Proc Natl Acad Sci U S A. 95:11377–11382.

    PubMed  CAS  Google Scholar 

  • Kaliberova LN, Krendelchtchikova V, Harmon DK et al. (2009) CRAdRGDflt-IL24 virotherapy in combination with chemotherapy of experimental glioma. Cancer Gene Ther.

    Google Scholar 

  • Kawabe S, Nishikawa T, Munshi A et al. (2002) Adenovirus-mediated mda-7 gene expression radiosensitizes non-small cell lung cancer cells via TP53-independent mechanisms. Mol Ther. 6:637–644.

    PubMed  CAS  Google Scholar 

  • Knappe A, Hor S, Wittmann S et al. (2000) Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri. J Virol. 74:3881–3887.

    PubMed  CAS  Google Scholar 

  • Kotenko SV (2002) The family of IL-10-related cytokines and their receptors: related, but to what extent? Cytokine Growth Factor Rev. 13:223–240.

    CAS  Google Scholar 

  • Kreis S, Philippidou D, Margue C et al. (2007) Recombinant interleukin-24 lacks apoptosis-inducing properties in melanoma cells. PLoS ONE. 2:e1300

    PubMed  Google Scholar 

  • Leath CA, III, Kataram M, Bhagavatula P et al. (2004) Infectivity enhanced adenoviral-mediated mda-7/IL-24 gene therapy for ovarian carcinoma. Gynecol Oncol. 94:352–362.

    PubMed  CAS  Google Scholar 

  • Lebedeva IV, Su ZZ, Chang Y et al. (2002) The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells. Oncogene. 21:708–718.

    PubMed  CAS  Google Scholar 

  • Lebedeva IV, Washington I, Sarkar D et al. (2007) Strategy for reversing resistance to a single anticancer agent in human prostate and pancreatic carcinomas. Proc Natl Acad Sci U S A. 104:3484–3489.

    PubMed  CAS  Google Scholar 

  • Li D, Tang GP, Li JZ et al. (2007) Dual-targeting non-viral vector based on polyethylenimine improves gene transfer efficiency. J Biomater Sci Polym Ed. 18:545–560.

    PubMed  CAS  Google Scholar 

  • Liao YC, Liang WG, Chen FW et al. (2002) IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J Immunol. 169:4288–4297.

    PubMed  CAS  Google Scholar 

  • Liu Y, Mounkes LC, Liggitt HD et al. (1997) Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat Biotechnol. 15:167–173.

    PubMed  CAS  Google Scholar 

  • Lu C, Sepulveda C, Ji L et al. (2007) Systemic nanoparticle FUS1 tumor suppressor gene therapy for stage IV lung cancer. American Association of Cancer Research.

    Google Scholar 

  • Lu H, Zhang Y, Roberts DD et al. (2002) Enhanced gene expression in breast cancer cells in vitro and tumors in vivo. Mol Ther. 6:783–792.

    PubMed  CAS  Google Scholar 

  • Luikart SD, Kennealey GT, Kirkwood JM (1984) Randomized phase III trial of vinblastine, bleomycin, and cis-dichlorodiammine-platinum versus dacarbazine in malignant melanoma. J Clin Oncol. 2:164–168.

    PubMed  CAS  Google Scholar 

  • Mahasreshti PJ, Kataram M, Wu H et al. (2006) Ovarian cancer targeted adenoviral-mediated mda-7/IL-24 gene therapy. Gynecol Oncol. 100:521–532.

    PubMed  CAS  Google Scholar 

  • Mhashilkar AM, Schrock RD, Hindi M et al. (2001) Melanoma differentiation associated gene-7 (mda-7): a novel anti-tumor gene for cancer gene therapy. Mol Med. 7:271–282.

    PubMed  CAS  Google Scholar 

  • Mhashilkar AM, Stewart AL, Sieger K et al. (2003) MDA-7 negatively regulates the beta-catenin and PI3K signaling pathways in breast and lung tumor cells. Mol Ther. 8:207–219.

    PubMed  CAS  Google Scholar 

  • Middleton MR, Grob JJ, Aaronson N et al. (2000) Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol. 18:158–166.

    PubMed  CAS  Google Scholar 

  • Miyahara R, Banerjee S, Kawano K et al. (2006) Melanoma differentiation-associated gene-7 (mda-7)/interleukin (IL)-24 induces anticancer immunity in a syngeneic murine model. Cancer Gene Ther. 13:753–761.

    PubMed  CAS  Google Scholar 

  • Mumm JB, Ekmekcioglu S, Poindexter NJ et al. (2006) Soluble human MDA-7/IL-24: characterization of the molecular form(s) inhibiting tumor growth and stimulating monocytes. J Interferon Cytokine Res. 26:877–886.

    PubMed  CAS  Google Scholar 

  • Nabel GJ, Nabel EG, Yang ZY et al. (1993) Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci U S A. 90:11307–11311.

    PubMed  CAS  Google Scholar 

  • Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther. 9:1647–1652.

    PubMed  CAS  Google Scholar 

  • Nishikawa T, Ramesh R, Munshi A et al. (2004) Adenovirus-mediated mda-7 (IL24) gene therapy suppresses angiogenesis and sensitizes NSCLC xenograft tumors to radiation. Mol Ther. 9:818–828.

    PubMed  CAS  Google Scholar 

  • Oida Y, Gopalan B, Miyahara R et al. (2007) Inhibition of nuclear factor-kappaB augments antitumor activity of adenovirus-mediated melanoma differentiation-associated gene-7 against lung cancer cells via mitogen-activated protein kinase kinase kinase 1 activation. Mol Cancer Ther. 6:1440–1449.

    PubMed  CAS  Google Scholar 

  • Oida Y, Gopalan B, Miyahara R et al. (2005) Sulindac enhances adenoviral vector expressing mda-7/IL-24-mediated apoptosis in human lung cancer. Mol Cancer Ther. 4:291–304.

    PubMed  CAS  Google Scholar 

  • Parekh HS (2007) The advance of dendrimers--a versatile targeting platform for gene/drug delivery. Curr Pharm Des. 13:2837–2850.

    PubMed  CAS  Google Scholar 

  • Park MA, Walker T, Martin AP et al. (2009) MDA-7/IL-24-induced cell killing in malignant renal carcinoma cells occurs by a ceramide/CD95/PERK-dependent mechanism. Mol Cancer Ther.

    Google Scholar 

  • Pataer A, Vorburger SA, Barber GN et al. (2002) Adenoviral transfer of the melanoma differentiation-associated gene 7 (mda7) induces apoptosis of lung cancer cells via up-regulation of the double-stranded RNA-dependent protein kinase (PKR). Cancer Res. 62:2239–2243.

    PubMed  CAS  Google Scholar 

  • Pirollo KF, Rait A, Zhou Q et al. (2007) Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res. 67:2938–2943.

    PubMed  CAS  Google Scholar 

  • Poindexter N, Williams R, Powis G et al. (2007) IL-24 and Its Role in Wound Healing. J Immunother. 30:877–877.

    Google Scholar 

  • Poindexter NJ, Walch ET, Chada S et al. (2005) Cytokine induction of interleukin-24 in human peripheral blood mononuclear cells. J Leukoc Biol. 78:745–752.

    PubMed  CAS  Google Scholar 

  • Qian W, Liu J, Tong Y et al. (2008) Enhanced antitumor activity by a selective conditionally replicating adenovirus combining with MDA-7/interleukin-24 for B-lymphoblastic leukemia via induction of apoptosis. Leukemia. 22:361–369.

    PubMed  CAS  Google Scholar 

  • Ramesh R, Ito I, Gopalan B et al. (2004a) Ectopic production of MDA-7/IL-24 inhibits invasion and migration of human lung cancer cells. Mol Ther. 9:510–518.

    PubMed  CAS  Google Scholar 

  • Ramesh R, Ito I, Saito Y et al. (2004b) Local and systemic inhibition of lung tumor growth after nanoparticle-mediated mda-7/IL-24 gene delivery. DNA Cell Biol. 23:850–857.

    PubMed  CAS  Google Scholar 

  • Ramesh R, Mhashilkar AM, Tanaka F et al. (2003) Melanoma differentiation-associated gene 7/interleukin (IL)-24 is a novel ligand that regulates angiogenesis via the IL-22 receptor. Cancer Res. 63:5105–5113.

    PubMed  CAS  Google Scholar 

  • Ramesh R, Saeki T, Templeton NS et al. (2001) Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector. Mol Ther. 3:337–350.

    PubMed  CAS  Google Scholar 

  • Rosenberg SA, Yang JC, Schwartzentruber DJ et al. (1999) Prospective randomized trial of the treatment of patients with metastatic melanoma using chemotherapy with cisplatin, dacarbazine, and tamoxifen alone or in combination with interleukin-2 and interferon alfa-2b. J Clin Oncol. 17:968–975.

    PubMed  CAS  Google Scholar 

  • Saeki T, Mhashilkar A, Chada S et al. (2000) Tumor-suppressive effects by adenovirus-mediated mda-7 gene transfer in non-small cell lung cancer cell in vitro. Gene Ther. 7:2051–2057.

    PubMed  CAS  Google Scholar 

  • Saeki T, Mhashilkar A, Swanson X et al. (2002) Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene. 21:4558–4566.

    PubMed  CAS  Google Scholar 

  • Sainz-Perez A, Gary-Gouy H, Portier A et al. (2006) High Mda-7 expression promotes malignant cell survival and p38 MAP kinase activation in chronic lymphocytic leukemia. Leukemia.

    Google Scholar 

  • Sarkar D, Lebedeva IV, Su ZZ et al. (2007) Eradication of therapy-resistant human prostate tumors using a cancer terminator virus. Cancer Res. 67:5434–5442.

    PubMed  CAS  Google Scholar 

  • Sarkar D, Su ZZ, Lebedeva IV et al. (2002) mda-7 (IL-24) Mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci U S A. 99:10054–10059.

    PubMed  CAS  Google Scholar 

  • Sarkar D, Su ZZ, Park ES et al. (2008) A cancer terminator virus eradicates both primary and distant human melanomas. Cancer Gene Ther. 15:293–302.

    PubMed  CAS  Google Scholar 

  • Sauane M, Su ZZ, Gupta P et al. (2008) Autocrine regulation of mda-7/IL-24 mediates cancer-specific apoptosis. Proc Natl Acad Sci U S A. 105:9763–9768.

    PubMed  CAS  Google Scholar 

  • Shanker M, Gopalan B, Patel S et al. (2007) Vitamin E succinate in combination with mda-7 results in enhanced human ovarian tumor cell killing through modulation of extrinsic and intrinsic apoptotic pathways. Cancer Lett. 254:217–226.

    PubMed  CAS  Google Scholar 

  • Sheikh F, Baurin VV, Lewis-Antes A et al. (2004) Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2. J Immunol. 172:2006–2010.

    PubMed  CAS  Google Scholar 

  • Shi HY, Liang R, Templeton NS et al. (2002) Inhibition of breast tumor progression by systemic delivery of the maspin gene in a syngeneic tumor model. Mol Ther. 5:755–761.

    PubMed  CAS  Google Scholar 

  • Sieger KA, Mhashilkar AM, Stewart A et al. (2004) The tumor suppressor activity of MDA-7/IL-24 is mediated by intracellular protein expression in NSCLC cells. Mol Ther. 9:355–367.

    PubMed  CAS  Google Scholar 

  • Soo C, Shaw WW, Freymiller E et al. (1999) Cutaneous rat wounds express c49a, a novel gene with homology to the human melanoma differentiation associated gene, mda-7. Journal of Cellular Biochemistry 74:1–10.

    PubMed  CAS  Google Scholar 

  • Su Z, Lebedeva IV, Gopalkrishnan RV et al. (2001) A combinatorial approach for selectively inducing programmed cell death in human pancreatic cancer cells. Proc Natl Acad Sci U S A. 98:10332–10337.

    PubMed  CAS  Google Scholar 

  • Su Z, Emdad L, Sauane M et al. (2005) Unique aspects of mda-7/IL-24 antitumor bystander activity: establishing a role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene. 24:7552–7566.

    PubMed  CAS  Google Scholar 

  • Su ZZ, Madireddi MT, Lin JJ et al. (1998) The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci U S A. 95:14400–14405.

    PubMed  CAS  Google Scholar 

  • Templeton NS, Lasic DD, Frederik PM et al. (1997) Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol. 15:647–652.

    PubMed  CAS  Google Scholar 

  • Tong AW, Nemunaitis J, Su D et al. (2005) Intratumoral injection of INGN 241, a nonreplicating adenovector expressing the melanoma-differentiation associated gene-7 (mda-7/IL24): biologic outcome in advanced cancer patients. Mol Ther. 11:160–172.

    PubMed  CAS  Google Scholar 

  • Wang M, Tan Z, Zhang R et al. (2002) Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J Biol Chem. 277:7341–7347.

    PubMed  CAS  Google Scholar 

  • Wang X, Ye Z, Zhong J et al. (2007) Adenovirus-mediated Il-24 expression suppresses hepatocellular carcinoma growth via induction of cell apoptosis and cycling arrest and reduction of angiogenesis. Cancer Biother Radiopharm. 22:56–63.

    PubMed  Google Scholar 

  • Wang XS, Shi Q, Williams LA et al. (2008) Serum interleukin-6 predicts the development of multiple symptoms at nadir of allogeneic hematopoietic stem cell transplantation. Cancer. 113:2102–2109.

    PubMed  Google Scholar 

  • Xie MH, Aggarwal S, Ho WH et al. (2000) Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem. 275:31335–31339.

    PubMed  CAS  Google Scholar 

  • Xie Y, Sheng W, Xiang J et al. (2008) Recombinant human IL-24 suppresses lung carcinoma cell growth via induction of cell apoptosis and inhibition of tumor angiogenesis. Cancer Biother Radiopharm. 23:310–320.

    PubMed  CAS  Google Scholar 

  • Xiong J, Peng ZL, Tan X (2007a) [Effects of adenoviral-mediated mda-7/IL-24 gene infection on the growth and drug-resistance of drug-resistant]. Sichuan Da Xue Xue Bao Yi Xue Ban. 38:433-436.

    PubMed  CAS  Google Scholar 

  • Xiong J, Peng ZL, Tan X et al. (2007b) [Effect of adenovirus-mediated mda-7/IL-24 gene infection on apoptosis of drug-resistant human ovarian cancer cell lines OVCAR-3 and OVCAR-8/TR]. Ai Zheng. 26:371–376.

    PubMed  CAS  Google Scholar 

  • Xu L, Huang CC, Huang W et al. (2002) Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther. 1:337–346.

    PubMed  CAS  Google Scholar 

  • Yacoub A, Mitchell C, Lebedeva IV et al. (2003) mda-7 (IL-24) Inhibits growth and enhances radiosensitivity of glioma cells in vitro via JNK signaling. Cancer Biol Ther. 2:347–353.

    PubMed  CAS  Google Scholar 

  • Yang Y, Ertl HC, Wilson JM (1994) MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity. 1:433–442.

    PubMed  CAS  Google Scholar 

  • Yang Y, Jooss KU, Su Q et al. (1996) Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther. 3:137–144.

    PubMed  Google Scholar 

  • Yang YJ, Chen DZ, Li LX et al. (2009) Targeted IL-24 gene therapy inhibits cancer recurrence after liver tumor resection by inducing tumor cell apoptosis in nude mice. Hepatobiliary Pancreat Dis Int. 8:174–178.

    PubMed  CAS  Google Scholar 

  • Yotnda P, Davis AR, Hicks MJ et al. (2004) Liposomal enhancement of the antitumor activity of conditionally replication-competent adenoviral plasmids. Mol Ther. 9:489–495.

    PubMed  CAS  Google Scholar 

  • Zhang KJ, Wang YG, Cao X et al. (2009) Potent Antitumor Effect of Interleukin-24 Gene in the Survivin Promoter and Retinoblastoma Double-Regulated Oncolytic Adenovirus. Hum Gene Ther.

    Google Scholar 

  • Zheng M, Bocangel D, Doneske B et al. (2007) Human interleukin 24 (MDA-7/IL-24) protein kills breast cancer cells via the IL-20 receptor and is antagonized by IL-10. Cancer Immunol Immunother. 56:205–215.

    PubMed  CAS  Google Scholar 

  • Zheng M, Bocangel D, Ramesh R et al. (2008) Interleukin-24 overcomes temozolomide resistance and enhances cell death by down-regulation of O6-methylguanine-DNA methyltransferase in human melanoma cells. Mol Cancer Ther. 7:3842–3851.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Grimm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Poindexter, N., Ramesh, R., Ekmekcioglu, S., Ellerhorst, J., Kim, K., Grimm, E.A. (2010). Interleukin-24 Gene Therapy for Melanoma. In: Roth, J. (eds) Gene-Based Therapies for Cancer. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6102-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6102-0_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6101-3

  • Online ISBN: 978-1-4419-6102-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics