Skip to main content

Lentiviruses: Vectors for Cancer Gene Therapy

  • Chapter
  • First Online:
  • 845 Accesses

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Lentivirus are the most efficient viral gene transfer vectors. Partitioned engineered backbones containing the essential proteins needed for reverse transcription and integration and separate elements for the transgene payload provide a 3 or 4 safety designed components that when transduced into transient producer cells yield high titre vectors. Applications of these vector systems have been designed for application for suicide gene therapy using thymidine kinase, immunotherapy and vaccine development, gene replacement and gene silencing including RNAi, anti-angiogenesis, an myelosuppression protection studies are discussed. Most of these efforts have moved from basic concept through preclinical testing and many are in early phase clinical trials. Lentiviral backbones remain a very promising approach to safe and stable gene transfer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbink TE, Berkhout B. 2008. HIV-1 reverse transcription initiation: a potential target for novel antivirals? Virus Res 134:4–18

    Article  PubMed  CAS  Google Scholar 

  • Aiken C. 1997. Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A. J Virol 71:5871–7

    PubMed  CAS  Google Scholar 

  • Ambros V. 2001. microRNAs: tiny regulators with great potential. Cell 107:823–6

    Article  PubMed  CAS  Google Scholar 

  • Arumugam PI, Scholes J, Perelman N, Xia P, Yee JK, Malik P. 2007. Improved human beta-globin expression from self-inactivating lentiviral vectors carrying the chicken hypersensitive site-4 (cHS4) insulator element. Mol Ther 15:1863–71

    Article  PubMed  CAS  Google Scholar 

  • Benard J, Douc-Rasy S, Ahomadegbe JC. 2003. TP53 family members and human cancers. Hum Mutat 21:182–91

    Article  PubMed  CAS  Google Scholar 

  • Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. 1999. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284:808–12

    Article  PubMed  CAS  Google Scholar 

  • Beyer WR, Westphal M, Ostertag W, von Laer D. 2002. Oncoretrovirus and lentivirus vectors pseudotyped with lymphocytic choriomeningitis virus glycoprotein: generation, concentration, and broad host range. J Virol 76:1488–95

    Article  PubMed  CAS  Google Scholar 

  • Bishop JM. 1991. Molecular themes in oncogenesis. Cell 64:235–48

    Article  PubMed  CAS  Google Scholar 

  • Boehm T, Folkman J, Browder T, O’Reilly MS. 1997. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390:404–7

    Article  PubMed  CAS  Google Scholar 

  • Boon T, van der Bruggen P. 1996. Human tumor antigens recognized by T lymphocytes. J Exp Med 183:725–9

    Article  PubMed  CAS  Google Scholar 

  • Breckpot K, Aerts JL, Thielemans K. 2007. Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics. Gene Ther 14:847–62

    Article  PubMed  CAS  Google Scholar 

  • Briggs JA, Simon MN, Gross I, Krausslich HG, Fuller SD, et al. 2004. The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol 11:672–5

    Article  PubMed  CAS  Google Scholar 

  • Bronte V, Mocellin S. 2009. Suppressive influences in the immune response to cancer. J Immunother 32:1–11

    Article  PubMed  Google Scholar 

  • Brown BD, Cantore A, Annoni A, Sergi LS, Lombardo A, et al. 2007a. A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110:4144–52

    Article  PubMed  CAS  Google Scholar 

  • Brown BD, Naldini L. 2009. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 10:578–85

    Article  PubMed  CAS  Google Scholar 

  • Brown BD, Sitia G, Annoni A, Hauben E, Sergi LS, et al. 2007b. In vivo administration of lentiviral vectors triggers a type I interferon response that restricts hepatocyte gene transfer and promotes vector clearance. Blood 109:2797–805

    Article  PubMed  CAS  Google Scholar 

  • Brown BD, Venneri MA, Zingale A, Sergi L, Naldini L. 2006. Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 12:585–91

    Article  PubMed  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R. 2002. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–7

    Article  PubMed  CAS  Google Scholar 

  • Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK. 1993. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A 90:8033–7

    Article  PubMed  CAS  Google Scholar 

  • Burrows FJ, Gore M, Smiley WR, Kanemitsu MY, Jolly DJ, et al. 2002. Purified herpes simplex virus thymidine kinase retroviral particles: III. Characterization of bystander killing mechanisms in transfected tumor cells. Cancer Gene Ther 9:87–95

    Article  PubMed  CAS  Google Scholar 

  • Cai DW, Mukhopadhyay T, Liu Y, Fujiwara T, Roth JA. 1993. Stable expression of the wild-type p53 gene in human lung cancer cells after retrovirus-mediated gene transfer. Hum Gene Ther 4:617–24

    Article  PubMed  CAS  Google Scholar 

  • Cao Y. 1999. Therapeutic potentials of angiostatin in the treatment of cancer. Haematologica 84:643–50

    PubMed  CAS  Google Scholar 

  • Caron de Fromentel C, Soussi T. 1992. TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes Chromosomes Cancer 4:1–15

    Article  PubMed  CAS  Google Scholar 

  • Cattoglio C, Facchini G, Sartori D, Antonelli A, Miccio A, et al. 2007. Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood 110:1770–8

    Article  PubMed  CAS  Google Scholar 

  • Chang LJ, He J. 2001. Retroviral vectors for gene therapy of AIDS and cancer. Curr Opin Mol Ther 3:468–75

    PubMed  CAS  Google Scholar 

  • Chang LJ, Zaiss AK. 2003. Self-inactivating lentiviral vectors and a sensitive Cre-loxP reporter system. Methods Mol Med 76:367–82

    PubMed  CAS  Google Scholar 

  • Chardin P. 1988. The ras superfamily proteins. Biochimie 70:865–8

    Article  PubMed  CAS  Google Scholar 

  • Charneau P, Mirambeau G, Roux P, Paulous S, Buc H, Clavel F. 1994. HIV-1 reverse transcription. A termination step at the center of the genome. J Mol Biol 241:651–62

    Article  PubMed  CAS  Google Scholar 

  • Check E. 2005. Gene therapy put on hold as third child develops cancer. Nature 433:561

    Google Scholar 

  • Chinnasamy D, Fairbairn LJ, Neuenfeldt J, Treisman JS, Hanson JP, Jr., et al. 2004. Lentivirus-mediated expression of mutant MGMTP140K protects human CD34+ cells against the combined toxicity of O6-benzylguanine and 1,3-bis(2-chloroethyl)-nitrosourea or temozolomide. Hum Gene Ther 15:758–69

    Article  PubMed  CAS  Google Scholar 

  • Cockrell AS, Kafri T. 2007. Gene delivery by lentivirus vectors. Mol Biotechnol 36:184–204

    Article  PubMed  CAS  Google Scholar 

  • Cohen EA, Subbramanian RA, Gottlinger HG. 1996. Role of auxiliary proteins in retroviral morphogenesis. Curr Top Microbiol Immunol 214:219–35

    Article  PubMed  CAS  Google Scholar 

  • Coleman JE, Huentelman MJ, Kasparov S, Metcalfe BL, Paton JF, et al. 2003. Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol Genomics 12:221–8

    PubMed  CAS  Google Scholar 

  • Cronin J, Zhang XY, Reiser J. 2005. Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5:387–98

    Article  PubMed  CAS  Google Scholar 

  • Croyle MA, Callahan SM, Auricchio A, Schumer G, Linse KD, et al. 2004. PEGylation of a vesicular stomatitis virus G pseudotyped lentivirus vector prevents inactivation in serum. J Virol 78:912–21

    Article  PubMed  CAS  Google Scholar 

  • Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM. 1992. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256:1550–2

    Article  PubMed  CAS  Google Scholar 

  • D’Costa J, Harvey-White J, Qasba P, Limaye A, Kaneski CR, et al. 2003. HIV-2 derived lentiviral vectors: gene transfer in Parkinson’s and Fabry disease models in vitro. J Med Virol 71:173–82

    Article  PubMed  CAS  Google Scholar 

  • DePolo NJ, Reed JD, Sheridan PL, Townsend K, Sauter SL, et al. 2000. VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Mol Ther 2:218–22

    Article  PubMed  CAS  Google Scholar 

  • Desmaris N, Bosch A, Salaun C, Petit C, Prevost MC, et al. 2001. Production and neurotropism of lentivirus vectors pseudotyped with lyssavirus envelope glycoproteins. Mol Ther 4:149–56

    Article  PubMed  CAS  Google Scholar 

  • Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, et al. 1998. A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–71

    PubMed  CAS  Google Scholar 

  • Dullaers M, Van Meirvenne S, Heirman C, Straetman L, Bonehill A, et al. 2006. Induction of effective therapeutic antitumor immunity by direct in vivo administration of lentiviral vectors. Gene Ther 13:630–40

    Article  PubMed  CAS  Google Scholar 

  • Dyall J, Latouche JB, Schnell S, Sadelain M. 2001. Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood 97:114–21

    Article  PubMed  CAS  Google Scholar 

  • Edelstein ML, Abedi MR, Wixon J. 2007. Gene therapy clinical trials worldwide to 2007--an update. J Gene Med 9:833–42

    Article  PubMed  Google Scholar 

  • Emerman M. 1996a. From curse to cure: HIV for gene therapy? Nat Biotechnol 14:943

    Article  PubMed  CAS  Google Scholar 

  • Emerman M. 1996b. HIV-1, Vpr and the cell cycle. Curr Biol 6:1096–103

    Article  PubMed  CAS  Google Scholar 

  • Endo M, Zoltick PW, Peranteau WH, Radu A, Muvarak N, et al. 2008. Efficient in vivo targeting of epidermal stem cells by early gestational intraamniotic injection of lentiviral vector driven by the keratin 5 promoter. Mol Ther 16:131–7

    Article  PubMed  CAS  Google Scholar 

  • Erickson LC. 1991. The role of O-6 methylguanine DNA methyltransferase (MGMT) in drug resistance and strategies for its inhibition. Semin Cancer Biol 2:257–65

    PubMed  CAS  Google Scholar 

  • Esslinger C, Chapatte L, Finke D, Miconnet I, Guillaume P, et al. 2003. In vivo administration of a lentiviral vaccine targets DCs and induces efficient CD8(+) T cell responses. J Clin Invest 111:1673–81

    PubMed  CAS  Google Scholar 

  • Evans-Galea MV, Wielgosz MM, Hanawa H, Srivastava DK, Nienhuis AW. 2007. Suppression of clonal dominance in cultured human lymphoid cells by addition of the cHS4 insulator to a lentiviral vector. Mol Ther 15:801–9

    PubMed  CAS  Google Scholar 

  • Farson D, Witt R, McGuinness R, Dull T, Kelly M, et al. 2001. A new-generation stable inducible packaging cell line for lentiviral vectors. Hum Gene Ther 12:981–97

    Article  PubMed  CAS  Google Scholar 

  • Firat H, Zennou V, Garcia-Pons F, Ginhoux F, Cochet M, et al. 2002. Use of a lentiviral flap vector for induction of CTL immunity against melanoma. Perspectives for immunotherapy. J Gene Med 4:38–45

    Article  PubMed  Google Scholar 

  • Flint M, Logvinoff C, Rice CM, McKeating JA. 2004. Characterization of infectious retroviral pseudotype particles bearing hepatitis C virus glycoproteins. J Virol 78:6875–82

    Article  PubMed  CAS  Google Scholar 

  • Folkman J. 1990. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6

    Article  PubMed  CAS  Google Scholar 

  • Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L. 2000. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25:217–22

    Article  PubMed  CAS  Google Scholar 

  • Foss FM. 2002. Immunologic mechanisms of antitumor activity. Semin Oncol 29:5–11

    Article  PubMed  CAS  Google Scholar 

  • Frankel AD, Young JA. 1998. HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 67:1–25

    Article  PubMed  CAS  Google Scholar 

  • Friedmann T. 1992. A brief history of gene therapy. Nat Genet 2:93–8

    Article  PubMed  CAS  Google Scholar 

  • Gasmi M, Glynn J, Jin MJ, Jolly DJ, Yee JK, Chen ST. 1999. Requirements for efficient production and transduction of human immunodeficiency virus type 1-based vectors. J Virol 73:1828–34

    PubMed  CAS  Google Scholar 

  • Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, et al. 2004. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364:2181–7

    Article  PubMed  CAS  Google Scholar 

  • Gerson SL. 2002. Clinical relevance of MGMT in the treatment of cancer. J Clin Oncol 20:2388–99

    Article  PubMed  CAS  Google Scholar 

  • Giacca M. 2004. The HIV-1 Tat protein: a multifaceted target for novel therapeutic opportunities. Curr Drug Targets Immune Endocr Metabol Disord 4:277–85

    Article  PubMed  CAS  Google Scholar 

  • Gilbert JR, Wong-Staal F. 2001. HIV-2 and SIV vector systems. Somat Cell Mol Genet 26:83–98

    Article  PubMed  CAS  Google Scholar 

  • Ginn SL, Curtin JA, Kramer B, Smyth CM, Wong M, et al. 2005. Treatment of an infant with X-linked severe combined immunodeficiency (SCID-X1) by gene therapy in Australia. Med J Aust 182:458–63

    PubMed  Google Scholar 

  • Goyette MC, Cho K, Fasching CL, Levy DB, Kinzler KW, et al. 1992. Progression of colorectal cancer is associated with multiple tumor suppressor gene defects but inhibition of tumorigenicity is accomplished by correction of any single defect via chromosome transfer. Mol Cell Biol 12:1387–95

    PubMed  CAS  Google Scholar 

  • Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, et al. 2003a. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–6

    Article  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, et al. 2003b. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–9

    Article  PubMed  CAS  Google Scholar 

  • Hamel W, Magnelli L, Chiarugi VP, Israel MA. 1996. Herpes simplex virus thymidine kinase/ganciclovir-mediated apoptotic death of bystander cells. Cancer Res 56:2697–702

    PubMed  CAS  Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GJ. 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–6

    Article  PubMed  CAS  Google Scholar 

  • Hayward WS, Neel BG, Astrin SM. 1981. Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290:475–80

    Article  PubMed  CAS  Google Scholar 

  • He L, Hannon GJ. 2004. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–31

    Article  PubMed  CAS  Google Scholar 

  • He Y, Zhang J, Donahue C, Falo LD, Jr. 2006. Skin-derived dendritic cells induce potent CD8(+) T cell immunity in recombinant lentivector-mediated genetic immunization. Immunity 24:643–56

    Article  PubMed  CAS  Google Scholar 

  • He Y, Zhang J, Mi Z, Robbins P, Falo LD, Jr. 2005. Immunization with lentiviral vector-transduced dendritic cells induces strong and long-lasting T cell responses and therapeutic immunity. J Immunol 174:3808–17

    PubMed  CAS  Google Scholar 

  • Higashikawa F, Chang L. 2001. Kinetic analyses of stability of simple and complex retroviral vectors. Virology 280:124–31

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Tan W, Zhong Q, Schwarzenberger P. 2005. Development of a gene therapy based bone marrow purging system for leukemias. Cancer Gene Ther 12:873–83

    Article  PubMed  CAS  Google Scholar 

  • Humbert M, Dietrich U. 2006. The role of neutralizing antibodies in HIV infection. AIDS Rev 8:51–9

    PubMed  Google Scholar 

  • Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, et al. 2003. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–7

    Article  PubMed  CAS  Google Scholar 

  • Kaeser MD, Pebernard S, Iggo RD. 2004. Regulation of p53 stability and function in HCT116 colon cancer cells. J Biol Chem 279:7598–605

    Article  PubMed  CAS  Google Scholar 

  • Kafri T, van Praag H, Gage FH, Verma IM. 2000. Lentiviral vectors: regulated gene expression. Mol Ther 1:516–21

    Article  PubMed  CAS  Google Scholar 

  • Kafri T, van Praag H, Ouyang L, Gage FH, Verma IM. 1999. A packaging cell line for lentivirus vectors. J Virol 73:576–84

    PubMed  CAS  Google Scholar 

  • Kaina B, Christmann M, Naumann S, Roos WP. 2007. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 6:1079–99

    Article  CAS  Google Scholar 

  • Kelly EJ, Russell SJ. 2009. MicroRNAs and the regulation of vector tropism. Mol Ther 17:409–16

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi E, Menendez S, Ohori M, Cordon-Cardo C, Kasahara N, Bochner BH. 2004. Inhibition of orthotopic human bladder tumor growth by lentiviral gene transfer of endostatin. Clin Cancer Res 10:1835–42

    Article  PubMed  CAS  Google Scholar 

  • Kim VN, Mitrophanous K, Kingsman SM, Kingsman AJ. 1998. Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J Virol 72:811–6

    PubMed  CAS  Google Scholar 

  • Klages N, Zufferey R, Trono D. 2000. A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol Ther 2:170–6

    Article  PubMed  CAS  Google Scholar 

  • Kowolik CM, Yee JK. 2002. Preferential transduction of human hepatocytes with lentiviral vectors pseudotyped by Sendai virus F protein. Mol Ther 5:762–9

    Article  PubMed  CAS  Google Scholar 

  • Kuate S, Wagner R, Uberla K. 2002. Development and characterization of a minimal inducible packaging cell line for simian immunodeficiency virus-based lentiviral vectors. J Gene Med 4:347–55

    Article  PubMed  CAS  Google Scholar 

  • Kwon YJ, Hung G, Anderson WF, Peng CA, Yu H. 2003. Determination of infectious retrovirus concentration from colony-forming assay with quantitative analysis. J Virol 77:5712–20

    Article  PubMed  CAS  Google Scholar 

  • Levine BL, Humeau LM, Boyer J, MacGregor RR, Rebello T, et al. 2006. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci U S A 103:17372–7

    Article  PubMed  CAS  Google Scholar 

  • Lewis PF, Emerman M. 1994. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68:510–6

    PubMed  CAS  Google Scholar 

  • Li CJ, Friedman DJ, Wang C, Metelev V, Pardee AB. 1995. Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 268:429–31

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Gerson SL. 2006. Targeted modulation of MGMT: clinical implications. Clin Cancer Res 12:328–31

    Article  PubMed  CAS  Google Scholar 

  • Loimas S, Toppinen MR, Visakorpi T, Janne J, Wahlfors J. 2001. Human prostate carcinoma cells as targets for herpes simplex virus thymidine kinase-mediated suicide gene therapy. Cancer Gene Ther 8:137–44

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein PR. 1997. Why are we doing so much cancer gene therapy? Disentangling the scientific basis from the origins of gene therapy. Gene Ther 4:755–6

    Article  PubMed  CAS  Google Scholar 

  • Mariani R, Chen D, Schrofelbauer B, Navarro F, Konig R, et al. 2003. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114:21–31

    Article  PubMed  CAS  Google Scholar 

  • McCormack MP, Forster A, Drynan L, Pannell R, Rabbitts TH. 2003. The LMO2 T-cell oncogene is activated via chromosomal translocations or retroviral insertion during gene therapy but has no mandatory role in normal T-cell development. Mol Cell Biol 23:9003–13

    Article  PubMed  CAS  Google Scholar 

  • McDonald D, Vodicka MA, Lucero G, Svitkina TM, Borisy GG, et al. 2002. Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 159:441–52

    Article  PubMed  CAS  Google Scholar 

  • Metharom P, Ellem KA, Schmidt C, Wei MQ. 2001. Lentiviral vector-mediated tyrosinase-related protein 2 gene transfer to dendritic cells for the therapy of melanoma. Hum Gene Ther 12:2203–13

    Article  PubMed  CAS  Google Scholar 

  • Michael NL, Moore JP. 1999. HIV-1 entry inhibitors: evading the issue. Nat Med 5:740–2

    Article  PubMed  CAS  Google Scholar 

  • Miller DG, Adam MA, Miller AD. 1990. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10:4239–42

    PubMed  CAS  Google Scholar 

  • Milsom MD, Williams DA. 2007. Live and let die: in vivo selection of gene-modified hematopoietic stem cells via MGMT-mediated chemoprotection. DNA Repair (Amst) 6:1210–21

    Article  CAS  Google Scholar 

  • Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, et al. 2004. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:E234

    Article  PubMed  CAS  Google Scholar 

  • Miyagishi M, Sumimoto H, Miyoshi H, Kawakami Y, Taira K. 2004. Optimization of an siRNA-expression system with an improved hairpin and its significant suppressive effects in mammalian cells. J Gene Med 6:715–23

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB. 2009. HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 137:433–44

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki Y, Takamatsu T, Nosaka T, Fujita S, Martin TE, Hatanaka M. 1995. The cytotoxicity of human immunodeficiency virus type 1 Rev: implications for its interaction with the nucleolar protein B23. Exp Cell Res 219:93–101

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM. 1998. Development of a self-inactivating lentivirus vector. J Virol 72:8150–7

    PubMed  CAS  Google Scholar 

  • Modlich U, Baum C. 2009. Preventing and exploiting the oncogenic potential of integrating gene vectors. J Clin Invest 119:755–8

    Article  PubMed  CAS  Google Scholar 

  • Molina RP, Matukonis M, Paszkiet B, Zhang J, Kaleko M, Luo T. 2002. Mapping of the bovine immunodeficiency virus packaging signal and RRE and incorporation into a minimal gene transfer vector. Virology 304:10–23

    Article  PubMed  CAS  Google Scholar 

  • Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, et al. 2009. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 119:964–75

    Article  PubMed  CAS  Google Scholar 

  • Mselli-Lakhal L, Guiguen F, Greenland T, Mornex JF, Chebloune Y. 2006. Gene transfer system derived from the caprine arthritis-encephalitis lentivirus. J Virol Methods 136:177–84

    Article  PubMed  CAS  Google Scholar 

  • Mulligan RC. 1993. The basic science of gene therapy. Science 260:926–32

    Article  PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, et al. 1996. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–7

    Article  PubMed  CAS  Google Scholar 

  • Nomaguchi M, Fujita M, Adachi A. 2008. Role of HIV-1 Vpu protein for virus spread and pathogenesis. Microbes Infect 10:960–7

    Article  PubMed  CAS  Google Scholar 

  • Norris PJ, Rosenberg ES. 2001. Cellular immune response to human immunodeficiency virus. AIDS 15 Suppl 2:S16–21

    Article  PubMed  CAS  Google Scholar 

  • Nottage M, Siu LL. 2002. Rationale for Ras and raf-kinase as a target for cancer therapeutics. Curr Pharm Des 8:2231–42

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, et al. 1997. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–85

    Article  PubMed  Google Scholar 

  • O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, et al. 1994. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–28

    Article  PubMed  Google Scholar 

  • Olsen JC. 1998. Gene transfer vectors derived from equine infectious anemia virus. Gene Ther 5:1481–7

    Article  PubMed  CAS  Google Scholar 

  • Ory DS, Neugeboren BA, Mulligan RC. 1996. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci U S A 93:11400–6

    Article  PubMed  CAS  Google Scholar 

  • Pariente N, Morizono K, Virk MS, Petrigliano FA, Reiter RE, et al. 2007. A novel dual-targeted lentiviral vector leads to specific transduction of prostate cancer bone metastases in vivo after systemic administration. Mol Ther 15:1973–81

    Article  PubMed  CAS  Google Scholar 

  • Patel CA, Mukhtar M, Pomerantz RJ. 2000. Human immunodeficiency virus type 1 Vpr induces apoptosis in human neuronal cells. J Virol 74:9717–26

    Article  PubMed  CAS  Google Scholar 

  • Pham L, Ye H, Cosset FL, Russell SJ, Peng KW. 2001. Concentration of viral vectors by co-precipitation with calcium phosphate. J Gene Med 3:188–94

    Article  PubMed  CAS  Google Scholar 

  • Philippon V, Vellutini C, Gambarelli D, Harkiss G, Arbuthnott G, et al. 1994. The basic domain of the lentiviral Tat protein is responsible for damages in mouse brain: involvement of cytokines. Virology 205:519–29

    Article  PubMed  CAS  Google Scholar 

  • Pichlmair A, Diebold SS, Gschmeissner S, Takeuchi Y, Ikeda Y, et al. 2007. Tubulovesicular structures within vesicular stomatitis virus G protein-pseudotyped lentiviral vector preparations carry DNA and stimulate antiviral responses via Toll-like receptor 9. J Virol 81:539–47

    Article  PubMed  CAS  Google Scholar 

  • Piguet V, Trono D. 1999. The Nef protein of primate lentiviruses. Rev Med Virol 9:111–20

    Article  PubMed  CAS  Google Scholar 

  • Poeschla EM, Wong-Staal F, Looney DJ. 1998. Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat Med 4:354–7

    Article  PubMed  CAS  Google Scholar 

  • Pollard VW, Malim MH. 1998. The HIV-1 Rev protein. Annu Rev Microbiol 52:491–532

    Article  PubMed  CAS  Google Scholar 

  • Popa I, Harris ME, Donello JE, Hope TJ. 2002. CRM1-dependent function of a cis-acting RNA export element. Mol Cell Biol 22:2057–67

    Article  PubMed  CAS  Google Scholar 

  • Rath P, Shi H, Maruniak JA, Litofsky NS, Maria BL, Kirk MD. 2009. Stem cells as vectors to deliver HSV/tk gene therapy for malignant gliomas. Curr Stem Cell Res Ther 4:44–9

    Article  PubMed  CAS  Google Scholar 

  • Roe T, Reynolds TC, Yu G, Brown PO. 1993. Integration of murine leukemia virus DNA depends on mitosis. EMBO J 12:2099–108

    PubMed  CAS  Google Scholar 

  • Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, et al. 1990. Gene transfer into humans – immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 323:570–8

    Article  PubMed  CAS  Google Scholar 

  • Rubsam LZ, Boucher PD, Murphy PJ, KuKuruga M, Shewach DS. 1999. Cytotoxicity and accumulation of ganciclovir triphosphate in bystander cells cocultured with herpes simplex virus type 1 thymidine kinase-expressing human glioblastoma cells. Cancer Res 59:669–75

    PubMed  CAS  Google Scholar 

  • Saenz DT, Poeschla EM. 2004. FIV: from lentivirus to lentivector. J Gene Med 6 Suppl 1:S95–104

    Article  PubMed  CAS  Google Scholar 

  • Salani B, Damonte P, Zingone A, Barbieri O, Chou JY, et al. 2005. Newborn liver gene transfer by an HIV-2-based lentiviral vector. Gene Ther 12:803–14

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Neschadim A, Konrad M, Fowler DH, Lavie A, Medin JA. 2007. Engineered human tmpk/AZT as a novel enzyme/prodrug axis for suicide gene therapy. Mol Ther 15:962–70

    Article  PubMed  CAS  Google Scholar 

  • Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. 2002. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–9

    Article  PubMed  CAS  Google Scholar 

  • Schroers R, Sinha I, Segall H, Schmidt-Wolf IG, Rooney CM, et al. 2000. Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system. Mol Ther 1:171–9

    Article  PubMed  CAS  Google Scholar 

  • Scollay R. 2001. Gene therapy: a brief overview of the past, present, and future. Ann N Y Acad Sci 953:26–30

    Article  PubMed  CAS  Google Scholar 

  • Seliger B. 2005. Strategies of tumor immune evasion. BioDrugs 19:347–54

    Article  PubMed  CAS  Google Scholar 

  • Sena-Esteves M, Tebbets JC, Steffens S, Crombleholme T, Flake AW. 2004. Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods 122:131–9

    Article  PubMed  CAS  Google Scholar 

  • Sheehy AM, Gaddis NC, Choi JD, Malim MH. 2002. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–50

    Article  PubMed  CAS  Google Scholar 

  • Shichinohe T, Bochner BH, Mizutani K, Nishida M, Hegerich-Gilliam S, et al. 2001. Development of lentiviral vectors for antiangiogenic gene delivery. Cancer Gene Ther 8:879–89

    Article  PubMed  CAS  Google Scholar 

  • Shin KJ, Wall EA, Zavzavadjian JR, Santat LA, Liu J, et al. 2006. A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proc Natl Acad Sci U S A 103:13759–64

    Article  PubMed  CAS  Google Scholar 

  • Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA. 1990. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J 9:1551–60

    PubMed  CAS  Google Scholar 

  • Strang BL, Takeuchi Y, Relander T, Richter J, Bailey R, et al. 2005. Human immunodeficiency virus type 1 vectors with alphavirus envelope glycoproteins produced from stable packaging cells. J Virol 79:1765–71

    Article  PubMed  CAS  Google Scholar 

  • Sumimoto H, Hirata K, Yamagata S, Miyoshi H, Miyagishi M, et al. 2006a. Effective inhibition of cell growth and invasion of melanoma by combined suppression of BRAF (V599E) and Skp2 with lentiviral RNAi. Int J Cancer 118:472–6

    Article  PubMed  CAS  Google Scholar 

  • Sumimoto H, Imabayashi F, Iwata T, Kawakami Y. 2006b. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med 203:1651–6

    Article  PubMed  CAS  Google Scholar 

  • Sumimoto H, Kawakami Y. 2007. Lentiviral vector-mediated RNAi and its use for cancer research. Future Oncol 3:655–64

    Article  PubMed  CAS  Google Scholar 

  • Sumimoto H, Tsuji T, Miyoshi H, Hagihara M, Takada-Yamazaki R, et al. 2002. Rapid and efficient generation of lentivirally gene-modified dendritic cells from DC progenitors with bone marrow stromal cells. J Immunol Methods 271:153–65

    Article  PubMed  CAS  Google Scholar 

  • Sutton RE, Reitsma MJ, Uchida N, Brown PO. 1999. Transduction of human progenitor hematopoietic stem cells by human immunodeficiency virus type 1-based vectors is cell cycle dependent. J Virol 73:3649–60

    PubMed  CAS  Google Scholar 

  • Tay DL, Bhathal PS, Fox RM. 1991. Quantitation of G0 and G1 phase cells in primary carcinomas. Antibody to M1 subunit of ribonucleotide reductase shows G1 phase restriction point block. J Clin Invest 87:519–27

    Article  PubMed  CAS  Google Scholar 

  • Thomas CE, Ehrhardt A, Kay MA. 2003. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–58

    Article  PubMed  CAS  Google Scholar 

  • Unutmaz D, KewalRamani VN, Marmon S, Littman DR. 1999. Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J Exp Med 189:1735–46

    Article  PubMed  CAS  Google Scholar 

  • Valori CF, Ning K, Wyles M, Azzouz M. 2008. Development and applications of non-HIV-based lentiviral vectors in neurological disorders. Curr Gene Ther 8:406–18

    Article  PubMed  CAS  Google Scholar 

  • VandenDriessche T, Thorrez L, Naldini L, Follenzi A, Moons L, et al. 2002. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood 100:813–22

    Article  PubMed  CAS  Google Scholar 

  • Ventura A, Meissner A, Dillon CP, McManus M, Sharp PA, et al. 2004. Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci U S A 101:10380–5

    Article  PubMed  CAS  Google Scholar 

  • Verbeek B, Southgate TD, Gilham DE, Margison GP. 2008. O6-Methylguanine-DNA methyltransferase inactivation and chemotherapy. Br Med Bull 85:17–33

    Article  PubMed  CAS  Google Scholar 

  • Vigna E, Cavalieri S, Ailles L, Geuna M, Loew R, et al. 2002. Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol Ther 5:252–61

    Article  PubMed  CAS  Google Scholar 

  • Weinberg RA. 1991. Tumor suppressor genes. Science 254:1138–46

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Li Y, Crise B, Burgess SM. 2003. Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–51

    Article  PubMed  CAS  Google Scholar 

  • Xia H, Mao Q, Paulson HL, Davidson BL. 2002. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20:1006–10

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Ma H, McCown TJ, Verma IM, Kafri T. 2001. Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Mol Ther 3:97–104

    Article  PubMed  CAS  Google Scholar 

  • Yarosh DB. 1985. The role of O6-methylguanine-DNA methyltransferase in cell survival, mutagenesis and carcinogenesis. Mutat Res 145:1–16

    Article  PubMed  CAS  Google Scholar 

  • Young A, Lyons J, Miller AL, Phan VT, Alarcon IR, McCormick F. 2009. Ras signaling and therapies. Adv Cancer Res 102:1–17

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP. 2000. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  PubMed  CAS  Google Scholar 

  • Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P. 2000. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101:173–85

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Xia HQ, Cleghorn G, Gobe G, West M, Wei MQ. 2001. A highly efficient and consistent method for harvesting large volumes of high-titer lentiviral vectors. Gene Ther 8:1745–51

    Article  PubMed  CAS  Google Scholar 

  • Zielske SP, Gerson SL. 2002. Lentiviral transduction of P140K MGMT into human CD34(+) hematopoietic progenitors at low multiplicity of infection confers significant resistance to BG/BCNU and allows selection in vitro. Mol Ther 5:381–7

    Article  PubMed  CAS  Google Scholar 

  • Zufferey R, Donello JE, Trono D, Hope TJ. 1999. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–92

    PubMed  CAS  Google Scholar 

  • Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. 1997. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–5

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanton L. Gerson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lin, Y., Desai, A., Gerson, S.L. (2010). Lentiviruses: Vectors for Cancer Gene Therapy. In: Roth, J. (eds) Gene-Based Therapies for Cancer. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6102-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6102-0_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6101-3

  • Online ISBN: 978-1-4419-6102-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics