The Importance of Biofilms in Chronic Rhinosinusitis

  • Jeff G. Leid
  • Emily K. Cope
  • Stacy Parmenter
  • Mark E. Shirtliff
  • Scot Dowd
  • Randall Wolcott
  • Randall Basaraba DVM
  • Darrell Hunsaker
  • James Palmer
  • Noam Cohen


There is mounting evidence that bacterial and possibly fungal biofilms play an important role in the etiology and persistence of Chronic Rhinosinusitis (CRS). CRS affects nearly 16–25% of the US population each year, with billions of dollars of annual healthcare expenditures dedicated to its treatment (Gliklich and Metson 1995). Unfortunately, the recalcitrant nature of the disease, which often exhibits a chronic relapsing course, significantly contributes to these healthcare costs. The reasons for the persistent nature of the disease are likely secondary to a number of underlying pathophysiologic mechanisms. Asthma, allergic rhinitis, Gram-positive and Gram-negative infections, aspirin-sensitive asthma, fungus, osteitis, nasal polyposis, superantigens, and other factors have been implicated as etiologies contributing to the development of CRS.


Obstructive Sleep Apnea Allergic Rhinitis Terminal Restriction Fragment Length Polymorphism Chronic Rhinosinusitis Nasal Polyposis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allegrucci M, Hu FZ et al (2006) Phenotypic characterization of Streptococcus pneumoniae biofilm development. J Bacteriol 188(7):2325–2235Google Scholar
  2. Anderson GG, Moreau-Marquis S et al (2008) In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells. Infect Immun 76(4):1423–1433CrossRefPubMedGoogle Scholar
  3. Bachert C, Gevaert P et al (2002) Staphylococcus aureus superantigens and airway disease. Curr Allergy Asthma Rep 2(3):252–258CrossRefPubMedGoogle Scholar
  4. Bagge N, Hentzer M et al (2004) Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 48(4):1168–1174CrossRefPubMedGoogle Scholar
  5. Becker P, Hufnagle W et al (2001) Detection of differential gene expression in biofilm-forming versus planktonic populations of Staphylococcus aureus using micro-representational-difference analysis. Appl Environ Microbiol 67(7):2958–2965CrossRefPubMedGoogle Scholar
  6. Bendouah Z, Barbeau J et al (2006) Biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa is associated with an unfavorable evolution after surgery for chronic sinusitis and nasal polyposis. Otolaryngol Head Neck Surg 134(6):991–996CrossRefPubMedGoogle Scholar
  7. Bernstein JM, Ballow M et al (2003) A superantigen hypothesis for the pathogenesis of chronic hyperplastic sinusitis with massive nasal polyposis. Am J Rhinol 17(6):321–326PubMedGoogle Scholar
  8. Bolger WE, Leonard D et al (1997) Gram negative sinusitis: a bacteriologic and histologic study in rabbits. Am J Rhinol 11(1):15–25CrossRefPubMedGoogle Scholar
  9. Bollinger N, Hassett DJ et al (2001) Gene expression in Pseudomonas aeruginosa: evidence of iron override effects on quorum sensing and biofilm-specific gene regulation. J Bacteriol 183(6):1990–1996CrossRefPubMedGoogle Scholar
  10. Buzina W, Braun H et al (2003) Bipolaris spicifera causes fungus balls of the sinuses and triggers polypoid chronic rhinosinusitis in an immunocompetent patient. J Clin Microbiol 41(10):4885–4887CrossRefPubMedGoogle Scholar
  11. Chiu AG, Palmer JN et al (2008) Baby shampoo nasal irrigations for the symptomatic post-functional endoscopic sinus surgery patient. Am J Rhinol 22(1):34–37CrossRefPubMedGoogle Scholar
  12. Christensen LD, Moser C et al (2007) Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. Microbiology 153(Pt 7):2312–2320CrossRefPubMedGoogle Scholar
  13. Cohen NA, Kennedy DW (2005) Endoscopic sinus surgery: where we are-and where we’re going. Curr Opin Otolaryngol Head Neck Surg 13(1):32–38CrossRefPubMedGoogle Scholar
  14. Costerton JW, Stewart PS et al (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322CrossRefPubMedGoogle Scholar
  15. Coticchia J, Zuliani G et al (2007) Biofilm surface area in the pediatric nasopharynx: Chronic rhinosinusitis vs obstructive sleep apnea. Arch Otolaryngol Head Neck Surg 133(2):110–114CrossRefPubMedGoogle Scholar
  16. Cryer J, Schipor I et al (2004) Evidence of bacterial biofilms in human chronic sinusitis. ORL J Otorhinolaryngol Relat Spec 66(3):155–158PubMedGoogle Scholar
  17. da Fonseca EL, Freitas Fdos S et al (2008) Detection of new arr-4 and arr-5 gene cassettes in clinical Pseudomonas aeruginosa and Klebsiella pneumoniae strains from Brazil. Antimicrob Agents Chemother 52(5):1865–1867CrossRefPubMedGoogle Scholar
  18. Davies DG, Parsek MR et al (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298CrossRefPubMedGoogle Scholar
  19. Desrosiers M, Myntti M et al (2007) Methods for removing bacterial biofilms: in vitro study using clinical chronic rhinosinusitis specimens. Am J Rhinol 21(5):527–532CrossRefPubMedGoogle Scholar
  20. Dong YH, Wang LH et al (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411(6839):813–817CrossRefPubMedGoogle Scholar
  21. Donlan RM (2000) Role of biofilms in antimicrobial resistance. ASAIO J 46(6):S47–52Google Scholar
  22. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890PubMedGoogle Scholar
  23. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193CrossRefPubMedGoogle Scholar
  24. Ehrlich GD, Veeh R et al (2002) Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA 287(13):1710–1715CrossRefPubMedGoogle Scholar
  25. Ferguson BJ, Stolz DB (2005) Demonstration of biofilm in human bacterial chronic rhinosinusitis. Am J Rhinol 19(5):452–457PubMedGoogle Scholar
  26. Gallant CV, Daniels C et al (2005) Common beta-lactamases inhibit bacterial biofilm formation. Mol Microbiol 58(4):1012–1024CrossRefPubMedGoogle Scholar
  27. Gates GA (1994) Adenoidectomy for otitis media with effusion. Ann Otol Rhinol Laryngol Suppl 163:54–58PubMedGoogle Scholar
  28. Gilbert P, Maira-Litran T et al (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:202–256PubMedGoogle Scholar
  29. Gillis RJ, Iglewski BH (2004) Azithromycin retards Pseudomonas aeruginosa biofilm formation. J Clin Microbiol 42(12):5842–5845CrossRefPubMedGoogle Scholar
  30. Gliklich RE, Metson R (1995) The health impact of chronic sinusitis in patients seeking otolaryngologic care. Otolaryngol Head Neck Surg 113(1):104–109CrossRefPubMedGoogle Scholar
  31. Gosepath J, Mann WJ (2005) Role of fungus in eosinophilic sinusitis. Curr Opin Otolaryngol Head Neck Surg 13(1):9–13CrossRefPubMedGoogle Scholar
  32. Ha KR, Psaltis AJ et al (2007) A sheep model for the study of biofilms in rhinosinusitis. Am J Rhinol 21(3):339–345CrossRefPubMedGoogle Scholar
  33. Hall-Stoodley L, Hu FZ et al (2006) Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 296(2):202–211CrossRefPubMedGoogle Scholar
  34. Hamilos DL, Lund VJ (2004) Etiology of chronic rhinosinusitis: the role of fungus. Ann Otol Rhinol Laryngol Suppl 193:27–31PubMedGoogle Scholar
  35. Hammer BK, Bassler BL (2003) Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50(1):101–104CrossRefPubMedGoogle Scholar
  36. Head NE, Yu H (2004) Cross-sectional analysis of clinical and environmental isolates of Pseudomonas aeruginosa: biofilm formation, virulence, and genome diversity. Infect Immun 72(1):133–144CrossRefPubMedGoogle Scholar
  37. Healy DY, Leid JG et al (2008) Biofilms with fungi in chronic rhinosinusitis. Otolaryngol Head Neck Surg 138(5):641–647CrossRefPubMedGoogle Scholar
  38. Hentzer M, Teitzel GM et al (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183(18):5395–5401CrossRefPubMedGoogle Scholar
  39. Hoffman LR, D’Argenio DA et al (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436(7054):1171–1175CrossRefPubMedGoogle Scholar
  40. Hoiby N, Krogh Johansen H et al (2001) Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 3(1):23–35CrossRefPubMedGoogle Scholar
  41. Jelsbak L, Johansen HK et al (2007) Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect Immun 75(5):2214–2224CrossRefPubMedGoogle Scholar
  42. Jensen PO, Bjarnsholt T et al (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153(Pt 5):1329–1338CrossRefPubMedGoogle Scholar
  43. Kadouri D, O’Toole GA (2005) Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol 71(7):4044–4051CrossRefPubMedGoogle Scholar
  44. Kennedy DW (2004) Pathogenesis of chronic rhinosinusitis. Ann Otol Rhinol Laryngol Suppl 193:6–9PubMedGoogle Scholar
  45. Klausen M, Gjermansen M et al (2006) Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms. FEMS Microbiol Lett 261(1):1–11CrossRefPubMedGoogle Scholar
  46. Koch B, Liljefors T et al (2005) The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors. Microbiology 151(Pt 11):3589–3602CrossRefPubMedGoogle Scholar
  47. Landry RM, An D et al (2006) Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol Microbiol 59(1):142–151CrossRefPubMedGoogle Scholar
  48. Leid JG, Costerton JW et al (2002) Immunology of Staphylococcal biofilm infections in the eye: new tools to study biofilm endophthalmitis. DNA Cell Biol 21(5–6):405–413CrossRefPubMedGoogle Scholar
  49. Leid JG, Shirtliff ME et al (2002) Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 70(11):6339–6345CrossRefPubMedGoogle Scholar
  50. Leid JG, Willson CJ et al (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175(11):7512–7518PubMedGoogle Scholar
  51. Leid JG, Kerr M et al (2009) Flagellar-mediated biofilm defense mechanisms of Pseudomonas aeruginosa against host derived lactoferrin. Infection and Immunity 77:4559–4566Google Scholar
  52. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39CrossRefPubMedGoogle Scholar
  53. Mah TF, Pitts B et al (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426(6964):306–310CrossRefPubMedGoogle Scholar
  54. Maw AR (1985) Age and adenoid size in relation to adenoidectomy in otitis media with effusion. Am J Otolaryngol 6(3):245–248CrossRefPubMedGoogle Scholar
  55. Nandakumar K, Obika H et al (2004) Recolonization of laser-ablated bacterial biofilm. Biotechnol Bioeng 85(2):185–189CrossRefPubMedGoogle Scholar
  56. Nivens DE, Ohman DE et al (2001) Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183(3):1047–1057CrossRefPubMedGoogle Scholar
  57. O’Toole G, Kaplan HB et al (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79CrossRefPubMedGoogle Scholar
  58. Ooi EH, Wormald PJ et al (2008) Innate immunity in the paranasal sinuses: a review of nasal host defenses. Am J Rhinol 22(1):13–19CrossRefPubMedGoogle Scholar
  59. Oulahal-Lagsir N, Martial-Gros A et al (2000) Ultrasonic methodology coupled to ATP bioluminescence for the non-invasive detection of fouling in food processing equipment–validation and application to a dairy factory. J Appl Microbiol 89(3):433–441CrossRefPubMedGoogle Scholar
  60. Oxley KS, Thomas JG et al (2007) Effect of ototopical medications on tympanostomy tube biofilms. Laryngoscope 117(10):1819–1824CrossRefPubMedGoogle Scholar
  61. Parkar SG, Flint SH et al (2004) Evaluation of the effect of cleaning regimes on biofilms of thermophilic bacilli on stainless steel. J Appl Microbiol 96(1):110–116CrossRefPubMedGoogle Scholar
  62. Parks QM, Young RL et al (2009) Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human F-actin and DNA as targets for therapy. J Med Microbiol 58(Pt 4):492–502CrossRefPubMedGoogle Scholar
  63. Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701CrossRefPubMedGoogle Scholar
  64. Perloff JR, Palmer JN (2004) Evidence of bacterial biofilms on frontal recess stents in patients with chronic rhinosinusitis. Am J Rhinol 18(6):377–380PubMedGoogle Scholar
  65. Perloff JR, Palmer JN (2005) Evidence of bacterial biofilms in a rabbit model of sinusitis. Am J Rhinol 19(1):1–6PubMedGoogle Scholar
  66. Post JC, Aul JJ et al (1996) PCR-based detection of bacterial DNA after antimicrobial treatment is indicative of persistent, viable bacteria in the chinchilla model of otitis media. Am J Otolaryngol 17(2):106–111CrossRefPubMedGoogle Scholar
  67. Post JC, Stoodley P et al (2004) The role of biofilms in otolaryngologic infections. Curr Opin Otolaryngol Head Neck Surg 12(3):185–190CrossRefPubMedGoogle Scholar
  68. Prince AA, Steiger JD et al (2008) Prevalence of biofilm-forming bacteria in chronic rhinosinusitis. Am J Rhinol 22(3):239–245CrossRefPubMedGoogle Scholar
  69. Psaltis AJ, Ha KR et al (2007) Confocal scanning laser microscopy evidence of biofilms in patients with chronic rhinosinusitis. Laryngoscope 117(7):1302–1306CrossRefPubMedGoogle Scholar
  70. Psaltis AJ, Weitzel EK et al (2008) The effect of bacterial biofilms on post-sinus surgical outcomes. Am J Rhinol 22(1):1–6CrossRefPubMedGoogle Scholar
  71. Ramadan HH, Sanclement JA et al (2005) Chronic rhinosinusitis and biofilms. Otolaryngol Head Neck Surg 132(3):414–417CrossRefPubMedGoogle Scholar
  72. Ratner AJ, Lysenko ES et al (2005) Synergistic proinflammatory responses induced by polymicrobial colonization of epithelial surfaces. Proc Natl Acad Sci USA 102(9):3429–3434CrossRefPubMedGoogle Scholar
  73. Ren D, Bedzyk LA et al (2004) Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64(4):515–524CrossRefPubMedGoogle Scholar
  74. Sanclement JA, Webster P et al (2005) Bacterial biofilms in surgical specimens of patients with chronic rhinosinusitis. Laryngoscope 115(4):578–582CrossRefPubMedGoogle Scholar
  75. Sanderson AR, Leid JG et al (2006) Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis. Laryngoscope 116(7):1121–1126CrossRefPubMedGoogle Scholar
  76. Sauer K, Camper AK et al (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4):1140–1154CrossRefPubMedGoogle Scholar
  77. Senior BA, Kennedy DW et al (1998) Long-term results of functional endoscopic sinus surgery. Laryngoscope 108(2):151–157CrossRefPubMedGoogle Scholar
  78. Sheehan E, McKenna J et al (2004) Adhesion of Staphylococcus to orthopaedic metals, an in vivo study. J Orthop Res 22(1):39–43CrossRefPubMedGoogle Scholar
  79. Shirtliff ME, Mader JT et al (2002) Molecular interactions in biofilms. Chem Biol 9(8):859–871CrossRefPubMedGoogle Scholar
  80. Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6(1):56–60CrossRefPubMedGoogle Scholar
  81. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138CrossRefPubMedGoogle Scholar
  82. Tripathi A, Conley DB et al (2004) Immunoglobulin E to staphylococcal and streptococcal toxins in patients with chronic sinusitis/nasal polyposis. Laryngoscope 114(10):1822–1826CrossRefPubMedGoogle Scholar
  83. Vallet I, Olson JW et al (2001) The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci USA 98(12):6911–6916CrossRefPubMedGoogle Scholar
  84. Veeh RH, Shirtliff ME et al (2003) Detection of Staphylococcus aureus biofilm on tampons and menses components. J Infect Dis 188(4):519–530CrossRefPubMedGoogle Scholar
  85. Vlastarakos PV, Nikolopoulos TP et al (2007) Biofilms in ear, nose, and throat infections: how important are they? Laryngoscope 117(4):668–673CrossRefPubMedGoogle Scholar
  86. Walker TS, Tomlin KL et al (2005) Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 73(6):3693–3701CrossRefPubMedGoogle Scholar
  87. Wargo MJ, Hogan DA (2006) Fungal – bacterial interactions: a mixed bag of mingling microbes. Curr Opin Microbiol 9(4):359–364CrossRefPubMedGoogle Scholar
  88. Webb JS, Givskov M et al (2003) Bacterial biofilms: prokaryotic adventures in multicellularity. Curr Opin Microbiol 6(6):578–585CrossRefPubMedGoogle Scholar
  89. Whiteley M, Bangera MG et al (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413(6858):860–864CrossRefPubMedGoogle Scholar
  90. Woodworth BA, Antunes MB et al (2007) Murine tracheal and nasal septal epithelium for air-liquid interface cultures: a comparative study. Am J Rhinol 21(5):533–537CrossRefPubMedGoogle Scholar
  91. Wozniak DJ, Keyser R (2004) Effects of subinhibitory concentrations of macrolide antibiotics on Pseudomonas aeruginosa. Chest 125(2 Suppl):62S–69S; quiz 69SCrossRefPubMedGoogle Scholar
  92. Zuliani G, Carron M et al (2006) Identification of adenoid biofilms in chronic rhinosinusitis. Int J Pediatr Otorhinolaryngol 70(9):1613–1617CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jeff G. Leid
    • 1
  • Emily K. Cope
    • 1
  • Stacy Parmenter
    • 1
  • Mark E. Shirtliff
    • 2
  • Scot Dowd
    • 3
  • Randall Wolcott
    • 3
  • Randall Basaraba DVM
    • 4
  • Darrell Hunsaker
    • 5
  • James Palmer
    • 6
  • Noam Cohen
    • 6
  1. 1.Center for Microbial Genetics and GenomicsNorthern Arizona UniversityFlagstaffUSA
  2. 2.Department of Microbial PathogenesisDental School, University of Maryland – BaltimoreBaltimoreUSA
  3. 3.Medical Biofilm Research InstituteLubbockUSA
  4. 4.Department of MicrobiologyImmunology and Pathology, Colorado State UniversityFort CollinsUSA
  5. 5.United States Naval Medical CenterSan DiegoUSA
  6. 6.Department of Otorhinolaryngology - Head and Neck SurgeryUniversity of Pennsylvania Medical CenterPhiladelphiaUSA

Personalised recommendations