Skip to main content

The Role of Bacterial Biofilms in Infections of Catheters and Shunts

  • Chapter
  • First Online:

Abstract

Catheters and shunts are tubes which are used to manage the flow of fluids into, within, and out of the body. Intravascular catheters deliver fluids and medications directly into the bloodstream, while urinary catheters drain waste fluids. In some cases devices such as cerebral ventricular shunts drain fluid from the brain, to another part of the body, such as the heart or stomach where the fluids are processed internally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aslam S (2008) Effect of antibacterials on biofilms. Am J Infect Control 36:S175.e179–S175.e111

    Google Scholar 

  • Blot F, Nitenberg G, Chachaty E, Raynard B, Germann N, Antoun S, Laplanche A, Brun-Buisson C, Tancrede C (1999) Diagnosis of catheter-related bacteraemia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures. Lancet 354:1071–1077

    Article  PubMed  CAS  Google Scholar 

  • Bouza E, Burillo A, Munoz P (2002) Catheter-related infections: diagnosis and intravascular treatment. Clin Microbiol Infect 8:265–274

    Article  PubMed  CAS  Google Scholar 

  • Bouza E, San Juan R, Munoz P, Pascau J, Voss A, Desco M (2004) A European perspective on intravascular catheter-related infections report on the microbiology workload, aetiology and antimicrobial susceptibility (ESGNI-005 Study). Clin Microbiol Infect 10:838–842

    Article  PubMed  CAS  Google Scholar 

  • Brady R, Leid J, Kofonow J, Costerton J, Shirtliff M (2007) Immunoglobulins to surface-associated biofilm immunogens provide a novel means of visualization of methicillin-resistant Staphylococcus aureus biofilms. Appl Environ Microbiol 73:6612–6619

    Article  PubMed  CAS  Google Scholar 

  • Chatzinikolaou I, Hanna H, Hachem R, Alakech B, Tarrand, J, Raad I (2004) Differential quantitative blood cultures for the diagnosis of catheter-related bloodstream infections associated with short- and long-term catheters: a prospective study. Diagn Microbiol Infect Dis 50:167–172

    Article  PubMed  Google Scholar 

  • Cicalini S, Palmieri F, Noto P, Boumis E, Petrosillo N (2002) Diagnosis of intra vascular catheter-related infection. J Vasc Access 3:114–119

    PubMed  CAS  Google Scholar 

  • Conen A, Walti L, Merlo A, Fluckiger U, Battegay M, Trampuz A (2008) Characteristics and treatment outcome of cerebrospinal fluid shunt-associated infections in adults: a retrospective analysis over an 11-year period. Clin Infect Dis 47:73–82

    Article  PubMed  Google Scholar 

  • Cormican M (2003) Device-associated infection: the biofilm-related problem in health care. In: Lens P, Moran AP, Mahony T, Stoodley P, O’Flaherty V (ed) Biofilms in medicine, industry and environmental biotechnology, IWA Publishing, London, UK

    Google Scholar 

  • Davis L, Cook G, Costerton J (2002) Biofilm on ventriculo-peritoneal shunt tubing as a cause of treatment failure in coccidioidal meningitis. Emerg Infect Dis 8:376–379

    Article  PubMed  Google Scholar 

  • DesJardin J, Falagas M, Ruthazer R, Griffith J, Wawrose D, Schenkein D, Miller K, Snydman D (1999) Clinical utility of blood cultures drawn from indwelling central venous catheters in hospitalized patients with cancer. Ann Intern Med 131:641–647

    PubMed  CAS  Google Scholar 

  • Diskin C, Stokes T, Dansby L, Radcliff L, Carter T (2007) Is systemic heparin a risk factor for catheter-related sepsis in dialysis patients? An evaluation of various biofilm and traditional risk factors. Nephron Clin Pract 107:22

    Article  Google Scholar 

  • Donlan R (2001a). Biofilms and device-associated infections. Emerg Infect Dis 7:277–281

    Article  PubMed  CAS  Google Scholar 

  • Donlan R (2001b). Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392

    Article  PubMed  CAS  Google Scholar 

  • Doshi R, Patel G, Mackay R, Wallach F (2009) Healthcare-associated Infections: epidemiology, prevention, and therapy. Mt Sinai J Med 76:84–94

    Article  PubMed  Google Scholar 

  • Fux CA, Wilson S, Stoodley P (2004) Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model. J Bacteriol 186:4486–4491

    Article  PubMed  CAS  Google Scholar 

  • Fux CA, Stoodley P, Hall-Stoodley L, Costerton JW (2003) Bacterial biofilms – a diagnostic and therapeutic challenge. Expert Rev Anti-Infect Ther 1:667–683

    Article  PubMed  Google Scholar 

  • Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40

    Article  PubMed  CAS  Google Scholar 

  • Getliffe K (2003) Managing recurrent urinary catheter blockage: Problems, promises, and practicalities. J WOCN 30:146–151

    Article  Google Scholar 

  • Gorman SP, Jones DS (2003) Biofilm complications of urinary tract devices. In: Wilson M, Devine D (eds) Medical implications of biofilm. Cambridge university press, Cambridge, pp 136–170

    Chapter  Google Scholar 

  • Gray M (2001) Managing urinary encrustation in the indwelling catheter. J WOCN 28:226–229

    Article  CAS  Google Scholar 

  • Ha U, Cho Y (2006) Catheter-associated urinary tract infections: new aspects of novel urinary catheters. Int J Antimicrob Agents 11:11

    Google Scholar 

  • Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 6:6

    Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiol 2:95–108

    Article  CAS  Google Scholar 

  • Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, Forbes M, Greenberg DP, Dice B, Burrows A, Stoodley P, Post JC, Ehrlich GD, Kerschner J (2006) Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 296:202–211

    Article  PubMed  CAS  Google Scholar 

  • Jaffe R., Lane J, Bates C (2001) Real-time identification of Pseudomonas aeruginosa direct from clinical samples. J Clin Lab Anal 15:131–137

    Article  PubMed  CAS  Google Scholar 

  • Juretschko S, Loy A, Lehner A, Wagner M (2002) The microbial community composition of a nitrifying-dentrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. J Syst Appl Microbiol 25:84–99

    Article  CAS  Google Scholar 

  • Kiran M, Giacometti A, Cirioni O, Balaban N (2008) Suppression of biofilm related, device-associated infections by staphylococcal quorum sensing inhibitors. Int J Artif Organs 31:761–770

    PubMed  CAS  Google Scholar 

  • Kirketerp-Moller K, Jensen P, Fazli M., Madsen K, Pedersen J, Moser C, Tolker-Nielsen T, Givskov M, Bjarnsholt T (2008) The distribution, organization and ecology of bacteria in chronic wounds. J Clin Microbiol 46(8): 2717–22

    Google Scholar 

  • Lau S, Woo P, Woo G, Yuen K (2002) Catheter-related Microbacterium bacteremia identified by 16S rRNA gene sequencing. J Clin Microbiol 40:2681–2685

    Article  PubMed  CAS  Google Scholar 

  • Leake J, Dowd S, Wolcott R, Zischkau A (2009) Identification of yeast in chronic wounds using new pathogen-detection technologies. J Wound Care 18:103–108

    PubMed  CAS  Google Scholar 

  • Leroy M, Cabral H, Figueira M, Bouchet V, Huot H, Ram S, Pelton SI, Goldstein R (2007) Multiple consecutive lavage samplings reveal greater burden of disease and provide direct access to the nontypeable Haemophilus influenzae biofilm in experimental otitis media. Infect Immun 75:4158–72

    Google Scholar 

  • Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56

    Article  PubMed  CAS  Google Scholar 

  • Liedl B (2001) Catheter-associated urinary tract infections. Curr Opin Urol 11:75–79

    Article  PubMed  CAS  Google Scholar 

  • Linde HJ, Hahn J, Holler E, Reischl U, Lehn N (2002) Septicemia due to Acinetobacter junii. J Clin Microbiol 40:2696–2697

    Article  PubMed  Google Scholar 

  • Machado J, Suen V, Figueiredo J, Marchini J (2009) Biofilms, Infection, and Parenteral Nutrition Therapy. J Parenter Enteral Nutr 33(4):397–403

    Google Scholar 

  • Maki D, Tambyah P (2001) Engineering out the Risk of Infection with Urinary Catheters. Emerg Infect Dis 7(2):342–347

    Google Scholar 

  • Maki D, Weise C, Sarafin H (1977) A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med 296:1305–1309

    Article  PubMed  CAS  Google Scholar 

  • Marcus R, Post J, Stoodley P, Hall-Stoodley L, McGill R, Sureshkumar K, Gahlot V (2008) Biofilms in nephrology. Expert Opin Biol Ther 8:1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Marie T, Costerton J (1984) Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters. SJ Clin Microbiol 19:687–693

    Google Scholar 

  • Marie T, Noble M, Costerton J (1983) Examination of the morphology of bacteria adhering to peritoneal dialysis catheters by scanning and transmission electron microscopy. J Clin Microbiol 18:1388–1398

    Google Scholar 

  • Mermel L, Farr B, Sherertz R, Raad I, O’Grady N, Harris J, Craven D (2001) Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis 32:1249–1272

    Article  PubMed  CAS  Google Scholar 

  • Murga R, Miller JM, Donlan RM (2001) Biofilm formation by Gram-negative bacteria on central venous catheter connectors: Effect of conditioning films in a laboratory model. J Clin Microbiol 39:2294–2297

    Article  PubMed  CAS  Google Scholar 

  • Neufeld JD, Mohn WW (2005) Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl Environ Microbiol 71:5710–5718

    Article  PubMed  CAS  Google Scholar 

  • Neut D, van der Mei H, Bulstra S, Busscher H (2007) The role of small-colony variants in failure to diagnose and treat biofilm infections in orthopedics. Acta Orthop 78:299–308

    Article  PubMed  Google Scholar 

  • Nielsen M, Thomsen TR, Moser C, Hoiby N, Nielsen PH (2008). Use of cultivation-dependent and -independent techniques to assess contamination of central venous catheters: a pilot study. BMC Clin Pathol 8

    Google Scholar 

  • Nickel J, Emtage J, Costerton J (1985) Ultrastructural microbial ecology of infection-induced urinary stones. J Urol 133(4):622–7

    Google Scholar 

  • Nistico L, Gieseke A, Stoodley P, Hall-Stoodley L, Kerschner JE, Ehrlich GD (2009) Fluorescence in-situ hybridization for the detection of biofilm in the middle ear and upper respiratory tract mucosa. In: Sokolowski B (eds) Auditory and vestibular research methods and protocols. The Humana Press, Totowa, NJ, pp 191–215

    Chapter  Google Scholar 

  • Ott S, El Mokhtari N, Rehman A, Rosenstiel P, Hellmig S, Kuhbacher T, Lins M, Simon R, Schreiber S (2007) Fungal rDNA signatures in coronary atherosclerotic plaques. Environ Microbiol 9:3035–3045

    Article  PubMed  CAS  Google Scholar 

  • Ott S, El Mokhtari N, Musfeldt M, Hellmig S, Freitag S, Rehman A, Kuhbacher T, Nikolaus S, Namsolleck P, Blaut M, Hampe J, Sahly H, Reinecke A, Haake N, Gunther R, Kruger D, Lins M, Herrmann G, Folsch U, Simon R, Schreiber S (2006) Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 113:929–937

    Article  PubMed  Google Scholar 

  • Park J, Cho Y, Kwon I, Jeong S, Bae Y (2002) Assessment of PEO/PTMO multiblock copolymer/segmented polyurethane blends as coating materials for urinary catheters: in vitro bacterial adhesion and encrustation behavior. Biomaterials 23:3991–4000

    Article  PubMed  CAS  Google Scholar 

  • Parsek M, Singh P (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701

    Article  PubMed  CAS  Google Scholar 

  • Piper KE, Jacobson MJ, Cofield RH, Sperling JW, Sanchez-Sotelo J, Osmon DR, McDowell A, Patrick S, Steckelberg JM, Mandrekar JN, Sampedro MF, Patel R (2009) Microbiologic diagnosis of prosthetic shoulder infection by use of implant sonication. J Clin Microbiol 47(6):1878–1884

    Article  PubMed  Google Scholar 

  • Post J, Preston R, Aul J, Larkins-Pettigrew M, Rydquist-White J, Anderson K, Wadowsky R, Reagan D, Walker E, Kingsley L, Magit A, Ehrlich G (1995) Molecular analysis of bacterial pathogens in otitis media with effusion. JAMA 273:1598–1604

    Article  PubMed  CAS  Google Scholar 

  • Pourrezaei K, Shvets I, DeLaurentis M, Boxman R, Beard R, Croitoriu N, Mukhtar M, Logan D, Rastogi R (1994) Development of antimicrobial and antithrombogenic coatings for inside and outside of medical catheters. Surface Coastings Technol 68:669–674

    Article  Google Scholar 

  • Rayner MG, Zhang Y, Gorry MC, Chen Y, Post, JC, Ehrlich GD (1998) Evidence of bacterial metabolic activity in culture-negative otitis media with effusion. JAMA 279:296–299

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Baño J, Martí S, Soto S, Fernández-Cuenca F, Cisneros JM, Pachón J, Pascual A, Martínez-Martínez L, McQueary C, Actis LA, Vila J (2008) Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. Clin Microbiol Infec14:276–278

    Article  Google Scholar 

  • Sabbuba NA, Mahenthiralingam E, Stickler DJ (2003) Molecular Epidemiology of Proteus mirabilis Infections of the Catheterized Urinary Tract. J Clin Microbiol 41:4961–4965

    Article  PubMed  CAS  Google Scholar 

  • Safdar N, Maki DG (2004) The pathogenesis of catheter-related bloodstream infection with noncuffed short-term central venous catheters. Intensive Care Med 30:62–67

    Article  PubMed  Google Scholar 

  • Safdar N, Kluger D, Maki D (2002) A Review of Risk Factors for Catheter-Related Bloodstream Infection Caused by Percutaneously Inserted, Noncuffed Central Venous Catheters: Implications for Preventive Strategies. Medicine 81:466–479

    Article  PubMed  Google Scholar 

  • Sakamoto M, Rocas I, Siqueira J Jr, Benno Y (2006) Molecular analysis of bacteria in asymptomatic and symptomatic endodontic infections. Oral Microbiol Immunol 21:112–122

    Article  PubMed  CAS  Google Scholar 

  • Schinabeck M, Ghannoum M (2003) Catheter-related infections – diagnosis, treatment and prevention. Clin Microbiol Newslett 25:113–118

    Article  Google Scholar 

  • Selan L, Passariello C, Rizzo L, Varesi P, Speziale F, Renzini G, Thaller M, Fiorani P, Rossolini G (2002) Diagnosis of vascular graft infections with antibodies against staphylococcal slime antigens. Lancet 359:2166–2168

    Article  PubMed  Google Scholar 

  • Shanks RMQ, Sargent JL, Martinez RM, Graber ML, O’Toole GA (2006) Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. doi: 10.1093/ndt/gfl170. Nephrol Dial Transplant 21:2247–2255

    Article  PubMed  CAS  Google Scholar 

  • Sherertz R (2004) Update on vascular catheter infections. Curr Opin Infect Dis 17:303–307

    Article  PubMed  Google Scholar 

  • Slobbe L, El Barzouhi A, Boersma E, Rijnders BJ (2009) Comparison of the roll plate and sonication method to diagnose catheter colonisation and bacteraemia in patients with long-term tunnelled catheters. A randomised prospective study. J Clin Microbiol 47(4):885–888

    Article  PubMed  Google Scholar 

  • Smuszkiewicz P, Trojanowska I, Tomczak H (2009) Venous catheter microbiological monitoring. Necessity or a habit? Med Sci Monit 15:SC5–8

    Google Scholar 

  • Spencer R (1999) Novel methods for the prevention of infection of intravascular devices. J Hosp Infect 43:S127–135

    Article  Google Scholar 

  • Starkey M, Hickman J, Ma L, Zhang N, De Long S, Hinz A, Palacios S, Manoil C, Kirisits M, Starner T, Wozniak D, Harwood, C, Parsek M (2009) Pseudomonas aeruginosa rugose small colony variants have adaptations likely to promote persistence in the cystic fibrosis lung. J Bacteriol 191(11):3492–503

    Google Scholar 

  • Stickler DJ (2008) Bacterial biofilms in patients with indwelling urinary catheters. Nat Clin Pract Urol 5:598–608

    CAS  Google Scholar 

  • Stoodley P, Nistico L, Johnson S, Carabin L-A, Baratz M, Gahlot V, Ehrlich GDE, Kathju S (2008) Direct demonstration of viable S. aureus biofilms in an infected total joint arthroplasty. JBJS 90:1751–1758

    Google Scholar 

  • Storti A, Pizzolitto AC, Pizzolitto EL (2005) Detection of mixed microbial biofilms on central venous catheters removed from Intensive care Unit Patients. Brazilian J Microbiol 36 275–280

    Google Scholar 

  • Tenover F (2007) Rapid detection and identification of bacterial pathogens using novel molecular technologies: infection control and beyond. Med Microbiol 44:418–423

    CAS  Google Scholar 

  • Thomsen TR, Ramsing NB, Finster K (2001) Biogeochemical and Molecular Signatures of Anaerobic Methane Oxidation in a Marine Sediment. Appl Environ Microbiol 67:1646–1656

    Article  PubMed  CAS  Google Scholar 

  • Timsit J (2007) Diagnosis and prevention of catheter-related infections. Curr Opin Crit Care 13:563–571

    Article  PubMed  Google Scholar 

  • Trampuz A, Piper K, Jacobson M, Hanssen A, Unni K, Osmon D, Mandrekar J, Cockerill F, Steckelberg J, Greenleaf J, Patel R (2007) Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 357:654–663

    Article  PubMed  CAS  Google Scholar 

  • Trautner B, Darouiche R (2004) Catheter-associated infections: pathogenesis affects prevention. Arch Intern Med 164:842–850

    Article  PubMed  Google Scholar 

  • Tunney M, Patrick S, Curran M, Ramage G, Hanna D, Nixon J, Gorman S, Davis R, Anderson N (1999) Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16S rRNA gene. J Clin Microbiol 37:3281–3290

    PubMed  CAS  Google Scholar 

  • Wang K, Chang W, Shih T, Huang C, Tsai N, Chang C, Chuang Y, Liliang P, Su T, Rau C., Tsai Y, Cheng B, Hung P, Chang C, Lu C (2004) Infection of cerebrospinal fluid shunts: causative pathogens, clinical features, and outcomes. Jpn J Infect Dis 57:44–48

    PubMed  Google Scholar 

  • Warwick S, Wilks M, Hennessy E, Powell-Tuck J, Small M, Sharp J, Millar M (2004) Use of quantitative 16S ribosomal DNA detection for diagnosis of central vascular catheter-associated bacterial infection. J Clin Microbiol 42:1402–1408

    Article  PubMed  CAS  Google Scholar 

  • Wilson M (2009) Biofilm and other causes of pain in catheterization. Br J Community Nurs 14:102–113

    PubMed  Google Scholar 

  • Woo PC, Tsoi HW, Leung KW, Lum PN, Leung AS, Ma CH, Kam KM, Yuen KY (2000) Identification of Mycobacterium neoaurum isolated from a neutropenic patient with catheter-related bacteremia by 16S rRNA sequencing. J Clin Microbiol 38:3515–3517

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trine Rolighed Thomsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Thomsen, T.R., Hall-Stoodley, L., Moser, C., Stoodley, P. (2011). The Role of Bacterial Biofilms in Infections of Catheters and Shunts. In: Bjarnsholt, T., Jensen, P., Moser, C., Høiby, N. (eds) Biofilm Infections. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6084-9_6

Download citation

Publish with us

Policies and ethics