Novel and Future Treatment Strategies

  • Morten Alhede
  • Tim Holm Jakobsen
  • Michael Givskov


The biofilm mode of life is by many scientists acknowledged as a successful, bacterial survival strategy in hostile environments. When bacteria invade their hosts, they encounter harsh conditions such as low levels of iron, oxidative stress, macerating enzymes, phagocytic cells, and host-derived as well as administered antimicrobials. Experimental evidence has accumulated over the years showing that biofilms tolerate antimicrobial properties of the immune system and antibiotics. This multifaceted tolerance relies to a certain extend on general resistance mechanisms including efflux pumps and enzymatic modifications in addition to innate tolerances offered by integral structure-functions of the biofilm.


Extracellular Polymeric Substance Quorum Sensing Quorum Sensing System Conventional Antibiotic Silver Sulfadiazine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Åberg V, Fallman E, Axner O, Uhlin BE, Hultgren SJ, Almqvist F (2007) Pilicides regulate pili expression in E. coli without affecting the functional properties of the pilus rod. Mol Biosyst 3:214–218PubMedCrossRefGoogle Scholar
  2. Alhede M, Bjarnsholt T, Jensen PO, et al (2009) Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155:3500–3508PubMedCrossRefGoogle Scholar
  3. Allen L, Dockrell DH, Pattery T, Lee DG, Cornelis P, Hellewell PG, Whyte MK (2005) Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J Immunol 174:3643–3649PubMedGoogle Scholar
  4. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128PubMedCrossRefGoogle Scholar
  5. Anderson GG, O’Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105, 85–105PubMedCrossRefGoogle Scholar
  6. Bailey L, Gylfe A, Sundin C, et al (2007) Small molecule inhibitors of type III secretion in Yersinia block the Chlamydia pneumoniae infection cycle. FEBS Lett 581:587–595PubMedCrossRefGoogle Scholar
  7. Balaban N, Stoodley P, Fux CA, Wilson S, Costerton JW, Dell’Acqua, G (2005) Prevention of staphylococcal biofilm-associated infections by the quorum sensing inhibitor RIP. Clin Orthop Relat Res 437:48–54PubMedCrossRefGoogle Scholar
  8. Balaban N, Cirioni O, Giacometti A, Ghiselli R, Braunstein JB, Silvestri C, Mocchegiani F, Saba V, Scalise G (2007) Treatment of Staphylococcus aureus Biofilm Infection by the Quorum-Sensing Inhibitor RIP. Antimicrob Agents Chemother 51:2226–2229PubMedCrossRefGoogle Scholar
  9. Berra L, Curto F, Li Bassi G, Laquerriere P, Pitts B, Baccarelli A, Kolobow T (2008a). Antimicrobial-coated endotracheal tubes: an experimental study. Intensive Care Med 34:1020–1029PubMedCrossRefGoogle Scholar
  10. Berra L, Kolobow T, Laquerriere P, et al (2008b) Internally coated endotracheal tubes with silver sulfadiazine in polyurethane to prevent bacterial colonization: a clinical trial. Intensive Care Med 34:1030–1037PubMedCrossRefGoogle Scholar
  11. Bjarnsholt T, Jensen PO, Burmolle M, et al (2005a) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383PubMedCrossRefGoogle Scholar
  12. Bjarnsholt T, Jensen PO, Rasmussen TB, et al (2005b) Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151:3873–3880PubMedCrossRefGoogle Scholar
  13. Bjarnsholt T, Givskov M (2007) Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Philos Trans R Soc Lond B Biol Sci 362:1213–1222PubMedCrossRefGoogle Scholar
  14. Bjarnsholt T, Kirketerp-Moller K, Kristiansen S, Phipps R, Nielsen AK, Jensen PO, Hoiby N, Givskov M (2007) Silver against Pseudomonas aeruginosa biofilms. APMIS 115:921–928PubMedCrossRefGoogle Scholar
  15. Bjarnsholt T, Givskov M (2008) Quorum sensing inhibitory drugs as next generation antimicrobials: worth the effort? Curr Infect Dis Rep 10:22–28PubMedCrossRefGoogle Scholar
  16. Bortolussi R, Vandenbroucke-Grauls CM, van Asbeck BS, Verhoef J (1987) Relationship of bacterial growth phase to killing of Listeria monocytogenes by oxidative agents generated by neutrophils and enzyme systems. Infect Immun 55:3197–3203PubMedGoogle Scholar
  17. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12PubMedCrossRefGoogle Scholar
  18. Brouillette E, Hyodo M, Hayakawa Y, Karaolis DKR, Malouin F (2005) 3',5'-Cyclic Diguanylic Acid Reduces the Virulence of Biofilm-Forming Staphylococcus aureus Strains in a Mouse Model of Mastitis Infection. Antimicrob Agents Chemother 49:3109–3113PubMedCrossRefGoogle Scholar
  19. Caubet R., Pedarros-Caubet F, Chu M, Freye E, de Belem RM, Moreau JM, Ellison WJ (2004) A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob Agents Chemother 48:4662–4664Google Scholar
  20. Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6:17–27PubMedCrossRefGoogle Scholar
  21. Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, Jabbouri S (2007) Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol 75:125–132PubMedCrossRefGoogle Scholar
  22. Chatzinikolaou I, Hanna H, Graviss L, et al (2003) Clinical experience with minocycline and rifampin-impregnated central venous catheters in bone marrow transplantation recipients: efficacy and low risk of developing staphylococcal resistance. Infect Control Hosp Epidemiol 24:961–963PubMedCrossRefGoogle Scholar
  23. Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59:587–590PubMedCrossRefGoogle Scholar
  24. Chopra I, Schofield C, Everett M, et al (2008) Treatment of health-care-associated infections caused by Gram-negative bacteria: a consensus statement. Lancet Infect Dis 8:133–139PubMedCrossRefGoogle Scholar
  25. Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3:541–548PubMedCrossRefGoogle Scholar
  26. Crnich CJ, Maki DG (2002) The promise of novel technology for the prevention of intravascular device-related bloodstream infection. II. Long-term devices. Clin Infect Dis 34:1362–1368PubMedCrossRefGoogle Scholar
  27. Curtin JJ, Donlan RM (2006) Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob Agents Chemother 50:1268–1275PubMedCrossRefGoogle Scholar
  28. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298PubMedCrossRefGoogle Scholar
  29. Davies DG, Marques CN (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403PubMedCrossRefGoogle Scholar
  30. Del Pozo JL, Rouse MS, Patel R (2008) Bioelectric effect and bacterial biofilms. A systematic review. Int J Artif Organs 31:786–795PubMedGoogle Scholar
  31. Dodson KW, Pinkner JS, Rose T, Magnusson G, Hultgren SJ, Waksman G (2001) Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105:733–743PubMedCrossRefGoogle Scholar
  32. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193PubMedCrossRefGoogle Scholar
  33. Doring G, Høiby N (2004) Early intervention and prevention of lung disease in cystic fibrosis: a European consensus. J Cyst Fibros 3:67–91PubMedCrossRefGoogle Scholar
  34. Drenkard E (2003) Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5:1213–1219PubMedCrossRefGoogle Scholar
  35. Eckhart L, Fischer H, Barken KB, Tolker-Nielsen T, Tschachler E (2007) DNase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus. Br J Dermatol 156:1342–1345PubMedCrossRefGoogle Scholar
  36. Eggimann P, Sax H, Pittet D (2004) Catheter-related infections. Microbes Infect 6:1033–1042PubMedCrossRefGoogle Scholar
  37. Favre-Bonte S, Pache JC, Robert J, Blanc D, Pechere JC, Van DC (2002) Detection of Pseudomonas aeruginosa cell-to-cell signals in lung tissue of cystic fibrosis patients. Microb Pathog 2:143–147CrossRefGoogle Scholar
  38. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275PubMedGoogle Scholar
  39. Gastmeier P, Geffers C (2006) Prevention of catheter-related bloodstream infections: analysis of studies published between 2002 and 2005. J Hosp Infect 64:326–335PubMedCrossRefGoogle Scholar
  40. Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and Management of Pulmonary Infections in Cystic Fibrosis. Am J Respir Crit Care Med 168:918–951PubMedCrossRefGoogle Scholar
  41. Haagensen JAJ, Klausen M, Ernst RK, Miller SI, Folkesson A, Tolker-Nielsen T, Molin S (2007) Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J Bacteriol 189:28–37PubMedCrossRefGoogle Scholar
  42. Hanna HA, Raad II, Hackett B, Wallace SK, Price KJ, Coyle DE, Parmley CL (2003) Antibiotic-impregnated catheters associated with significant decrease in nosocomial and multidrug-resistant bacteremias in critically ill patients. Chest 124:1030–1038PubMedCrossRefGoogle Scholar
  43. Hawkey PM (2008) The growing burden of antimicrobial resistance. J Antimicrob Chemother 62(Suppl 1): i1–9CrossRefGoogle Scholar
  44. Hentzer M, Wu H, Andersen JB, et al (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815PubMedCrossRefGoogle Scholar
  45. Hockenhull JC, Dwan K, Boland A, et al (2008) The clinical effectiveness and cost-effectiveness of central venous catheters treated with anti-infective agents in preventing bloodstream infections: a systematic review and economic evaluation. Health Technol Assess 12:iii–iv, xi–xii, 1–154Google Scholar
  46. Hoffmann N, Lee B, Hentzer M, Rasmussen TB, Song Z, Johansen HK, Givskov M, Hoiby N (2007) Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(–/–) mice. Antimicrob Agents Chemother 51:3677–3687PubMedCrossRefGoogle Scholar
  47. Høiby N, Frederiksen B, Pressler T (2005) Eradication of early Pseudomonas aeruginosa infection. J Cyst Fibros 4(Suppl 2):49–54PubMedCrossRefGoogle Scholar
  48. Huang B, Whitchurch CB, Mattick JS (2003) FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J Bacteriol 185:7068–7076PubMedCrossRefGoogle Scholar
  49. Hudson DL, Layton AN, Field TR, Bowen AJ, Wolf-Watz H, Elofsson M, Stevens MP, Galyov EE (2007) Inhibition of type III secretion in Salmonella enterica serovar Typhimurium by small-molecule inhibitors. Antimicrob Agents Chemother 51:2631–2635PubMedCrossRefGoogle Scholar
  50. Itoh Y, Wang X, Hinnebusch BJ, Preston JF, III, Romeo T (2005) Depolymerization of {beta}-1,6-N-Acetyl-D-Glucosamine Disrupts the Integrity of Diverse Bacterial Biofilms. J Bacteriol 187:382–387PubMedCrossRefGoogle Scholar
  51. Jass J, Costerton JW, Lappin-Scott HM (1995) The effect of electrical currents and tobramycin on Pseudomonas aeruginosa biofilms. J Ind Microbiol 15:234–242PubMedCrossRefGoogle Scholar
  52. Jensen PO, Bjarnsholt T, Phipps R, et al (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153:1329–1338PubMedCrossRefGoogle Scholar
  53. Jesaitis AJ, Franklin MJ, Berglund D, Sasaki M, Lord CI, Bleazard JB, Duffy JE, Beyenal H, Lewandowski Z (2003) Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 171:4329–4339PubMedGoogle Scholar
  54. Juhas M, Eberl L, Tummler B (2005) Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7:459–471PubMedCrossRefGoogle Scholar
  55. Kaplan JB, Ragunath C, Velliyagounder K, Fine DH, Ramasubbu N (2004) Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 48:2633–2636PubMedCrossRefGoogle Scholar
  56. Karaolis DK, Means TK, Yang D, et al (2007a). Bacterial c-di-GMP is an immunostimulatory molecule. J Immunol 178:2171–2181PubMedGoogle Scholar
  57. Karaolis DK, Newstead MW, Zeng X, Hyodo M, Hayakawa Y, Bhan U, Liang H, Standiford TJ (2007b) Cyclic di-GMP stimulates protective innate immunity in bacterial pneumonia. Infect Immun 75:4942–4950PubMedCrossRefGoogle Scholar
  58. Kharazmi A, Doring G, Høiby N, Valerius NH (1984) Interaction of Pseudomonas aeruginosa alkaline protease and elastase with human polymorphonuclear leukocytes in vitro. Infect Immun 43:161–165PubMedGoogle Scholar
  59. Kharazmi A (1991) Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. Immunol Lett 30:201–205PubMedCrossRefGoogle Scholar
  60. Klemm P (1992) FimC, a chaperone-like periplasmic protein of Escherichia coli involved in biogenesis of type 1 fimbriae. Res Microbiol 143:831–838PubMedCrossRefGoogle Scholar
  61. Kuehn MJ, Ogg DJ, Kihlberg J, Slonim LN, Flemmer K, Bergfors T, Hultgren SJ (1993) Structural basis of pilus subunit recognition by the PapD chaperone. Science 262:1234–1241PubMedCrossRefGoogle Scholar
  62. Kuehn MJ, Jacob-Dubuisson F, Dodson K, Slonim L, Striker R, Hultgren SJ (1994) Genetic, biochemical, and structural studies of biogenesis of adhesive pili in bacteria. Methods Enzymol 236:282–306PubMedCrossRefGoogle Scholar
  63. Lansdown AB (2002) Silver. I: Its antibacterial properties and mechanism of action. J Wound Care 11:125–130PubMedGoogle Scholar
  64. Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci USA 104:11197–11202PubMedCrossRefGoogle Scholar
  65. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310PubMedCrossRefGoogle Scholar
  66. Maira-Litran T, Kropec A, Goldmann D, Pier GB (2004) Biologic properties and vaccine potential of the staphylococcal poly-N-acetyl glucosamine surface polysaccharide. Vaccine 22:872–879PubMedCrossRefGoogle Scholar
  67. McLeod BR, Fortun S, Costerton JW, Stewart PS (1999) Enhanced bacterial biofilm control using electromagnetic fields in combination with antibiotics. Methods Enzymol 310:656–670PubMedCrossRefGoogle Scholar
  68. Merril CR, Scholl D, Adhya SL (2003) The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2:489–497PubMedCrossRefGoogle Scholar
  69. Middleton B, Rodgers HC, Camara M, Knox AJ, Williams P, Hardman A (2002) Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum. FEMS Microbiol Lett 207:1–7PubMedCrossRefGoogle Scholar
  70. Mizukane R, Hirakata Y, Kaku M, Ishii Y, Furuya N, Ishida K, Koga H, Kohno S, Yamaguchi K (1994) Comparative in vitro exoenzyme-suppressing activities of azithromycin and other macrolide antibiotics against Pseudomonas aeruginosa. Antimicrob Agents Chemother 38:528–533PubMedGoogle Scholar
  71. Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, Hultgren SJ (1998) Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:1494–1497PubMedCrossRefGoogle Scholar
  72. Muschiol S, Bailey L, Gylfe A, et al (2006) A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis. Proc Natl Acad Sci USA 103:14566–14571PubMedCrossRefGoogle Scholar
  73. Nalca Y, Jansch L, Bredenbruch F, Geffers R, Buer J, Haussler S (2006) Quorum-Sensing Antagonistic Activities of Azithromycin in Pseudomonas aeruginosa PAO1: a Global Approach. Antimicrob Agents Chemother 50:1680–1688PubMedCrossRefGoogle Scholar
  74. Nnis System Arf t (2004) National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 32:470–485CrossRefGoogle Scholar
  75. Nordfelth R, Kauppi AM, Norberg HA, Wolf-Watz H, Elofsson M (2005) Small-molecule inhibitors specifically targeting type III secretion. Infect Immun 73:3104–3114PubMedCrossRefGoogle Scholar
  76. O’Grady NP, Alexander M, Dellinger EP, et al (2002) Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR Recomm Rep 51:1–29PubMedGoogle Scholar
  77. Otto M (2004) Quorum-sensing control in Staphylococci – a target for antimicrobial drug therapy? FEMS Microbiol Lett 241:135–141PubMedCrossRefGoogle Scholar
  78. Pallasch TJ, Slots J (1996) Antibiotic prophylaxis and the medically compromised patient. Periodontol 2000 10:107–138PubMedCrossRefGoogle Scholar
  79. Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68:223–240PubMedCrossRefGoogle Scholar
  80. Pamp SJ, Sternberg C, Tolker-Nielsen T (2009) Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry A 75:90–103PubMedGoogle Scholar
  81. Parsek MR, Tolker-Nielsen T (2008) Pattern formation in Pseudomonas aeruginosa biofilms. Curr Opin Microbiol 11:560–566PubMedGoogle Scholar
  82. Pearson JP, Feldman M, Iglewski BH, Prince A (2000) Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 68:4331–4334PubMedCrossRefGoogle Scholar
  83. Pinkner JS, Remaut H, Buelens F, et al. (2006) Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc Natl Acad Sci USA 103:17897–17902PubMedCrossRefGoogle Scholar
  84. Pittet D, Tarara D, Wenzel RP (1994) Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality. JAMA 271:1598–1601PubMedCrossRefGoogle Scholar
  85. Raad II, Fang X, Keutgen XM, Jiang Y, Sherertz R, Hachem R (2008) The role of chelators in preventing biofilm formation and catheter-related bloodstream infections. Curr Opin Infect Dis 21:385–392PubMedCrossRefGoogle Scholar
  86. Ramritu P, Halton K, Collignon P, Cook D, Fraenkel D, Battistutta D, Whitby M, Graves N (2008) A systematic review comparing the relative effectiveness of antimicrobial-coated catheters in intensive care units. Am J Infect Control 36:104–117PubMedCrossRefGoogle Scholar
  87. Ramsey BW, Astley SJ, Aitken ML, et al (1993) Efficacy and safety of short-term administration of aerosolized recombinant human deoxyribonuclease in patients with cystic fibrosis. Am Rev Respir Dis 148:145–151PubMedGoogle Scholar
  88. Rasmussen TB, Skindersoe ME, Bjarnsholt T, et al (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151:1325–1340PubMedCrossRefGoogle Scholar
  89. Rediske AM, Roeder BL, Brown MK, Nelson JL, Robison RL, Draper DO, Schaalje GB, Robison RA, Pitt WG (1999) Ultrasonic enhancement of antibiotic action on Escherichia coli biofilms: an in vivo model. Antimicrob Agents Chemother 43:1211–1214PubMedGoogle Scholar
  90. Rediske AM, Roeder BL, Nelson JL, Robison RL, Schaalje GB, Robison RA, Pitt WG (2000) Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo. Antimicrob Agents Chemother 44:771–772PubMedCrossRefGoogle Scholar
  91. Roberts JA, Marklund BI, Ilver D, et al (1994) The Gal(alpha 1-4) Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci USA 91:11889–11893PubMedCrossRefGoogle Scholar
  92. Rosenthal VD, Guzman S, Orellano PW (2003) Nosocomial infections in medical-surgical intensive care units in Argentina: attributable mortality and length of stay. Am J Infect Control 31:291–295PubMedCrossRefGoogle Scholar
  93. Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN (1999) Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67:5854–5862PubMedGoogle Scholar
  94. Sampath LA, Tambe SM, Modak SM (2001) In vitro and in vivo efficacy of catheters impregnated with antiseptics or antibiotics: evaluation of the risk of bacterial resistance to the antimicrobials in the catheters. Infect Control Hosp Epidemiol 22:640–646PubMedCrossRefGoogle Scholar
  95. Sauer FG, Remaut H, Hultgren SJ, Waksman G (2004) Fiber assembly by the chaperone-usher pathway. Biochim Biophys Acta 1694:259–267PubMedCrossRefGoogle Scholar
  96. Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Ann Rev Microbiol 52:81–104CrossRefGoogle Scholar
  97. Simm R, Morr M, Kader A, Nimtz M, Romling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134PubMedCrossRefGoogle Scholar
  98. Skindersoe ME, Alhede M, Phipps R, et al (2008) Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:3648–3663PubMedCrossRefGoogle Scholar
  99. Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60PubMedCrossRefGoogle Scholar
  100. Smyth A, Walters S (2003) Prophylactic antibiotics for cystic fibrosis. Cochrane Database Syst Rev 3:CD001912PubMedGoogle Scholar
  101. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J Jr (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46:155–164PubMedCrossRefGoogle Scholar
  102. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138PubMedCrossRefGoogle Scholar
  103. Sun D, Accavitti MA, Bryers JD (2005) Inhibition of biofilm formation by monoclonal antibodies against Staphylococcus epidermidis RP62A accumulation-associated protein. Clin Diagn Lab Immunol 12:93–100PubMedGoogle Scholar
  104. Svensson A, Larsson A, Emtenas H, Hedenstrom M, Fex T, Hultgren SJ, Pinkner JS, Almqvist F, Kihlberg J (2001) Design and evaluation of pilicides: potential novel antibacterial agents directed against uropathogenic Escherichia coli. Chembiochem 2:915–918PubMedCrossRefGoogle Scholar
  105. Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci USA 100 Suppl 2:14549–14554PubMedCrossRefGoogle Scholar
  106. Tal R, Wong HC, Calhoon R, et al (1998) Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol 180:4416–4425PubMedGoogle Scholar
  107. Tamayo R, Pratt JT, Camilli A (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61:131–148PubMedCrossRefGoogle Scholar
  108. Tamilvanan S, Venkateshan N, Ludwig A (2008) The potential of lipid- and polymer-based drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections. J Controlled Release 128:2–22CrossRefGoogle Scholar
  109. Tashiro Y, Nomura N, Nakao R, et al (2008) Opr86 is essential for viability and is a potential candidate for a protective antigen against biofilm formation by Pseudomonas aeruginosa. J Bacteriol 190:3969–3978PubMedCrossRefGoogle Scholar
  110. Valerius NH, Koch C, Høiby N (1991) Prevention of chronic Pseudomonas aeruginosa colonisation in cystic fibrosis by early treatment. Lancet 338:725–726PubMedCrossRefGoogle Scholar
  111. Van Gennip M, Christensen LD, Alhede M, et al (2009) Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. APMIS 117:537–546PubMedCrossRefGoogle Scholar
  112. Vinodkumar CS, Neelagund YF, Kalsurmath S (2005) Bacteriophage in the treatment of experimental septicemic mice from a clinical isolate of multidrug resistant Klebsiella pneumoniae. J Commun Dis 37:18–29PubMedGoogle Scholar
  113. Vinodkumar CS, Kalsurmath S, Neelagund YF (2008) Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice. Indian J Pathol Microbiol 51:360–366PubMedCrossRefGoogle Scholar
  114. Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M (2003) Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 188:706–718PubMedCrossRefGoogle Scholar
  115. Vuong C, Kocianova S, Yao Y, Carmody AB, Otto M (2004) Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo. J Infect Dis 190:1498–1505PubMedCrossRefGoogle Scholar
  116. Walters MC III, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323PubMedCrossRefGoogle Scholar
  117. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedCrossRefGoogle Scholar
  118. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487PubMedCrossRefGoogle Scholar
  119. Withers H, Swift S, Williams P (2001) Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr Opin Microbiol 4:186–193PubMedCrossRefGoogle Scholar
  120. Wu H, Song Z, Hentzer M, et al (2000) Detection of N-acylhomoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa. Microbiology 146 (Pt 10):2481–2493PubMedGoogle Scholar
  121. Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Høiby N (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53:1054–1061PubMedCrossRefGoogle Scholar
  122. Xavier JB, Picioreanu C, Rani SA, van Loosdrecht MC, Stewart PS (2005) Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix – a modelling study. Microbiology 151:3817–3832PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Morten Alhede
    • 1
  • Tim Holm Jakobsen
    • 2
  • Michael Givskov
    • 3
  1. 1.Department of Systems BiologyTechnical University of DenmarkLyngbyDenmark
  2. 2.Department of International Health, Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of International Health, Immunology and Microbiology, Faculty of Health SciencesUniversity of CopenhagenCopenhagen NDenmark

Personalised recommendations