Adaptive Immune Responses and Biofilm Infections

  • Claus Moser
  • Peter Østrup Jensen


The adaptive immune response has been developed to distinguish between self and non-self just as the innate immune response. However, in comparison with the innate immune response the adaptive immune response is characterized by a higher degree of specificity and so-called memory. Where the innate immune response is designed to recognize a broad spectrum of foreign antigens (pathogen associated molecular patterns, PAMPS) present on numerous microorganisms, e.g. peptidoglycan or flagellin even with species dependent differences (e.g. phase variation) by the pattern recognition receptors (PRR), the adaptive immune response recognizes species or even strain specific antigens.


Cystic Fibrosis Antibody Response Innate Immune Response Infective Endocarditis Adaptive Immune Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252CrossRefPubMedGoogle Scholar
  2. Brady RA, Leid JG, Cathoun JH et al (2008) Osteomylitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol 52:13–22CrossRefPubMedGoogle Scholar
  3. Brazova J, Sediva A, Pospisilo vaD et al (2005) Differential cytokine profile in children with cystic fibrosis. Clin Immunol 115:210–215CrossRefPubMedGoogle Scholar
  4. Carlsson M, Eriksson L, Erwander I et al (2003) Pseudomonas-induced lung damage in cystic fibrosis correlates to bactericidal-permeability increasing protein (BPI)-autoantibodies. Clin Exp Immunol 21(suppl 32):S95–100Google Scholar
  5. Cassatella MA, Guasparri I, Ceska M et al (1993) Interferon-gamma inhibits interleukin-8 production by human polymorphonuclear leukocytes. Immunology 78:177–184PubMedGoogle Scholar
  6. Ciofu O, Bagge N, Høiby N (2002) Antibodies against beta-lactamase can improve ceftazidime treatment of lung infection with beta-lactam-resistant Pseudomonas aeruginosa in a rat model of chronic lung infection. APMIS 110:881–891CrossRefPubMedGoogle Scholar
  7. Ciofu O, Petersen TD, Jensen P et al (1999) Avidity of anti-P. aeruginosa antibodies during chronic infection in patients with cystic fibrosis. Thorax 54:141–144CrossRefPubMedGoogle Scholar
  8. Demedts IK, Bracke KR, Maes T et al (2006) Different roles for human lung dendritic cell subsets in pulmonary immune defense mechanisms. Am J Respir Cell Mol Biol 35:387–393CrossRefPubMedGoogle Scholar
  9. Devey ME, Bleasdale K, Stanley C et al (1984) Failure of maturation leads to increased susceptibility to immune complex glomerulonephritis. Immunology 52:377–383PubMedGoogle Scholar
  10. Döring G, Høiby N (1983) Longitudinal study of immune response to Pseudomonas aeruginosa antigens in cystic fibrosis. Infect Immun 42:197–201PubMedGoogle Scholar
  11. Döring G, Goldstein W, Röll A et al (1985) Role of Pseudomonas aeruginosa exoenzymes in lung infections of patients with cystic fibrosis. Infect Immun 49:557–562PubMedGoogle Scholar
  12. Hartl D, Griese M, Kappler M et al (2006) Pulmonary T(H)2 response in Pseudomonas aeruginosa infected patients with cystic fibrosis. J Allergy Clin Immunol 117:204–211CrossRefPubMedGoogle Scholar
  13. Høiby N, Flensborg EW, Beck B et al (1977) Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. Scan J Respir Dis 58:65–79Google Scholar
  14. Høiby N, Johansen HK, Moser C et al (2001) Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 3:23–35CrossRefPubMedGoogle Scholar
  15. Horvat RT, Parmely MJ (1988) Pseudomonas aeruginosa alkaline protease degades human gamma interferon and inhibits its bioactivity. Infect Immun 56:2925–2932PubMedGoogle Scholar
  16. Ito T, Kanzler H, Duramad O et al (2006) Specialization, kinetics and repetoire of type1 interferon responses by human plasmacytoid predendritic cells. Blood 107:2423–2431CrossRefPubMedGoogle Scholar
  17. Janeway CA, Travers P (1997) Immunobiology, 3rd edn. Current Biology ltd. Churchill Livingstone. Garland, New YorkGoogle Scholar
  18. Jarrossay D, Napolitani G, Colonna M et al (2001) Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 31:3388–3393CrossRefPubMedGoogle Scholar
  19. Johansen HK, Hougen HP, Rygaard J et al (1996) Interferon-gamma treatment decreases the inflammatory response in chronic Pseudomonas aeruginosa pneumonia in rats. Clin Exp Immunol 103:212–218CrossRefPubMedGoogle Scholar
  20. Kadowaki N, Ho S, Antonenko S et al (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194:863–869CrossRefPubMedGoogle Scholar
  21. Kharazmi A, Nielsen H (1991) Inhibition of human monocyte chemotaxis and chemiluminescence by Pseudomonas aeruginosa elastase. APMIS 99: 93–95CrossRefPubMedGoogle Scholar
  22. Kharazmi A, Döring G, Høiby N et al (1984) Interaction of Pseudomonas aeruginosa alkaline protease and elastase with human polymorphonuclear leukocytes in vitro. Infect Immun 43:161–165PubMedGoogle Scholar
  23. Kjerulf A, Tvede M, Aldershvile J et al (1998) Bacterial endocarditis at a tertiary hospital – how do we improve diagnosis and delay of treatment? A retrospective study of 140 patients. Cardiology 89:79–86CrossRefPubMedGoogle Scholar
  24. Koch C, Høiby N (1993) Pathogenesis of cystic fibrosis. Lancet 341:1065–1069CrossRefPubMedGoogle Scholar
  25. Leid JG, Willson CJ, Shirtliff ME et al (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-g-mediated macrophage killing. J Immunol 175:7512–7518PubMedGoogle Scholar
  26. Locksley RM, Heinzel FP, Sadick MH et al (1987) Murine cutaneous leishmaniasis: susceptibility correlates with different expansion of helper T cell subsets. Annales de l’Institut Pasteur de Paris/Immunology 138:744–749CrossRefGoogle Scholar
  27. McCormick LL, Karulin AY, Schreiber JR et al (1997) Bispecific antibodies overcome the opsonin-receptor mismatch of cystic fibrosis in vitro: restoration of neutrophil-mediated phagocytosis and killing of Pseudomonas aeruginosa. J Immunol 158:3474–3482PubMedGoogle Scholar
  28. Meluleni GJ, Grout M, Evans DJ et al (1995) Mucoid Pseudomonas aeruginosa growing in a biofilm in vitro are killed by opsonic antibodies to the mucoid exoploysaccharide capsule but not by antibodies produced during chronic lung infection in cystic fibrosis patients. J Immunol 155:2029–2038PubMedGoogle Scholar
  29. Moser C, Hougen HP, Song Z et al (1999) Early immune response in susceptible and resistant mice strains with chronic Pseudomonas aeruginosa lung infection determines the type of T-helper cell response. APMIS 107:1093–1100CrossRefPubMedGoogle Scholar
  30. Moser C, Jensen PØ, Kobayashi O et al (2002) Improved outcome of chronic Pseudomonas aeruginosa lung infection is associated with induction of a Th1-dominated cytokine response. Clin Exp Immunol 127:206–213CrossRefPubMedGoogle Scholar
  31. Moser C, Jensen PØ, Pressler T et al (2005) Serum concentrations of GM-CSF and G-CSF correlate with the Th1/Th2 cytokine response in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. APMIS 113:400–409CrossRefPubMedGoogle Scholar
  32. Moser C, Johansen HK, Song Z et al (1997) Chronic Pseudomonas aeruginosa lung infection is more severe in Th2 responding BALB/c mice compared to Th1 responding C3H/HeN mice. APMIS 105:838–842CrossRefPubMedGoogle Scholar
  33. Moser C, Kjaergaard S, Pressler T et al (2000) The immune response to chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is predominantly of the Th2 type. APMIS 108:329–335CrossRefPubMedGoogle Scholar
  34. Moser C, Kriegbaum NJ, Larsen SO et al (1998) Antibodies to urinary tract pathogens in patients with spinal cord injuries. Spinal cord 36:613–616CrossRefPubMedGoogle Scholar
  35. Mosmann TR, Cherwinski H, Bond MW et al (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357PubMedGoogle Scholar
  36. Moss RB, Hsu YP, Olds L (2000) Cytokine dysregulation in activated cystic fibrosis (CF) peripheral lymphocytes. Clin Exp Immunol 120:518–525CrossRefPubMedGoogle Scholar
  37. Ohtami S, Kobayashi O, Ohtami H (2001) Analysis of intractable factors in chronic airway infections: role of the autoimmunity induced by BPI-ANCA. J Infect Chemother 7:228–238CrossRefPubMedGoogle Scholar
  38. Penna G, Vulcano M, Roncari A et al (2002) Cutting edge: differential chemokine production by myeloid and plasmacytoid dendritic cells. J Immunol 169:6673–6676PubMedGoogle Scholar
  39. Petersen TD, Ciofu O, Pressler T et al (1996) Quantitative analysis of the IgG and IgG subclasses immune responses to chromosomal Pseudomonas aeruginosa beta-lactamase in serum from patients with cystic fibrosis by western blotting and laser scanning densitometry. Thorax 51:733–738CrossRefPubMedGoogle Scholar
  40. Piccioli D, Tavarini S, Borgogni E et al (2007) Functional specialization of human circulating CD16 and CD1c myeloid dendritic cell subsets. Blood 109:5371–5379CrossRefPubMedGoogle Scholar
  41. Pressler T, Karpati F, Granström M et al (2009) Diagnostic significance of measurements of specific IgG antibodies to Pseudomonas aeruginosa by three different serological methods. J Cyst Fibros 8:37–42CrossRefPubMedGoogle Scholar
  42. Pressler T, Mansa B, Jensen T et al (1988) Increased IgG2 and IgG3 concentration is associated with advanced Pseudomonas aeruginosa infection and poor pulmonary function in cystic fibrosis. Acta Paediatr Scand 77:576–582CrossRefPubMedGoogle Scholar
  43. Pressler T, Pedersen SS, Espersen F et al (1990) IgG subclass antibodies to Pseudomonas aeruginosa in sera from patients with chronic Pseudomonas aeruginosa infection investigated by ELISA. Clin Exp Immunol 81:428–434CrossRefPubMedGoogle Scholar
  44. Roitt I, Brostoff J, Male D (2006) Immunology, 6th edn. Mosby, LondonGoogle Scholar
  45. Schaudinn C, Gorur A, Keller D et al (2009)Periodontitis: an archetypical biofilm disease. J Am Dent Assoc 140:978–986PubMedGoogle Scholar
  46. Schnyder-Candrian S, Strieter RM, Kunkel SL et al (1995) Interferon-alpha and interferon-gamma down-regulate the production of interleukin-8 and ENA-78 in human monocytes. J Leukoc Biol 57:929–935PubMedGoogle Scholar
  47. Theander TG, Kharazmi A, Pedersen BK et al (1988) Inhibition of human lymphocyte proliferation and cleavage of interleukin-2 by Pseudomonas aeruginosa proteases. Infect Immun 56:1673–1677PubMedGoogle Scholar
  48. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department for Clinical MicrobiologyH:S RigshospitaletCopenhagen ØDenmark
  2. 2.Department for Clinical MicrobiologyH:S RigshospitaletCopenhagen ØDenmark

Personalised recommendations