Pseudomonas aeruginosa Biofilms in the Lungs of Cystic Fibrosis Patients

  • Niels Høiby
  • Helle Krogh Johansen
  • Claus Moser
  • Oana Ciofu
  • Peter Østrup Jensen
  • Mette Kolpen
  • Lotte Mandsberg
  • Michael Givskov
  • Søren Molin
  • Thomas Bjarnsholt


The consequence of the mutations in the CFTR gene is malfunction of the chloride channel in cystic fibrosis (CF) patients, which leads to decreased volume of the paraciliary fluid in the lower respiratory tract, and that in turn leads to impaired mucociliary clearance of inhaled microbes (Boucher 2004). This impairment of the non-inflammatory defense mechanism of the respiratory tract leads to early recruitment of the inflammatory defense mechanisms, e.g., polymorphonuclear leukocytes (PMN) and antibodies (Armstrong et al. 1995, 2005, Høiby et al. 2001). CF patients, therefore, from early childhood suffer from recurrent and chronic respiratory tract infections characterized by PMN inflammation.


Cystic Fibrosis Cystic Fibrosis Patient Quorum Sense Conductive Zone Cystic Fibrosis Lung 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ammitzbøll T, Pedersen SS, Espersen F et al (1988) Excretion of urinary collagen metabolites correlates to severity of pulmonary disease in cystic fibrosis. Acta Paediatr Scand 77:842–846PubMedCrossRefGoogle Scholar
  2. Anwar H, Strap JL, Chen K et al (1992a) Dynamic interactions of biofilms of mucoid Pseudomonas aeruginosa with tobramycin and piperacillin. Antimicrob Agents Chemother 36:1208–1214PubMedGoogle Scholar
  3. Anwar H, Strap JL, Costerton JW (1992b) Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agents Chemother 36:1347–1351PubMedGoogle Scholar
  4. Armstrong DS, Grimwood K, Carlin JB et al (1997) Lower airway inflammation in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 156:1197–1204PubMedGoogle Scholar
  5. Armstrong DS, Grimwood K, Carzino R et al (1995) Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis. Br Med J 310:1571–1572Google Scholar
  6. Armstrong DS, Hook SM, Jamsen KM et al (2005) Lower airway inflammation in infants with cystic fibrosis detected by newborn screening. Ped Pulmonol 40:500–510CrossRefGoogle Scholar
  7. Bagge N, Ciofu O, Hentzer M et al (2002) Constitutive high expression of chromosomal beta-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD. Antimicrob Agents Chemother 46:3406–3411PubMedCrossRefGoogle Scholar
  8. Bagge N, Ciofu O, Skovgaard LT et al (2000) Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growing Pseudomonas aeruginosa due to chromosomal beta-lactamase. Apmis 108:589–600PubMedCrossRefGoogle Scholar
  9. Bagge N, Hentzer M, Andersen JB et al (2004a) Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 48:1168–1174PubMedCrossRefGoogle Scholar
  10. Bagge N, Schuster M, Hentzer M et al (2004b) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 48:1175–1187PubMedCrossRefGoogle Scholar
  11. Baumann U, Stocklossa C, Greiner W et al (2003) Cost of care and clinical condition in paediatric cystic fibrosis patients. J Cystic Fibrosis 2:84–90CrossRefGoogle Scholar
  12. Bjarnsholt T, Jensen P-Ø, Burmølle M et al (2005a) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383PubMedCrossRefGoogle Scholar
  13. Bjarnsholt T, Jensen PØ, Fiandaca MJ et al (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44:547–558PubMedCrossRefGoogle Scholar
  14. Bjarnsholt T, Jensen PØ, Rasmussen TB et al (2005b) Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151:3873–3880PubMedCrossRefGoogle Scholar
  15. Borriello G, Werner E, Roe F et al (2004) Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48:2659–2664PubMedCrossRefGoogle Scholar
  16. Boucher JC, Martinezsalazar J, Schurr MJ et al (1996) Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine protease HtrA. J Bacteriol 178:511–523PubMedGoogle Scholar
  17. Boucher RC (2004) New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Resp J 23:146–158CrossRefGoogle Scholar
  18. Bragonzi A, Wiehlmann L, Klockgether J et al (2006) Sequence diversity of the mucoid mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 152:3261–3269PubMedCrossRefGoogle Scholar
  19. Brandt T, Breitenstein S, Vonderhardt H et al (1995) DNA concentration and length in sputum of patients with cystic fibrosis during inhalation with recombinant human DNase. Thorax 50:880–882PubMedCrossRefGoogle Scholar
  20. Bruce MC, Poncz L, Klinger JD et al (1985) Biochemical and pathologic evidence for proteolytic destruction of lung connective tissue in cystic fibrosis. Am Rev Respir Dis 132:529–535PubMedGoogle Scholar
  21. Burns JL, VanDalfsen JM, Shawar RM et al (1999) Effect of chronic intermittent administration of inhaled tobramycin on respiratory microbial flora in patients with cystic fibrosis. J Infec Dis 179:1190–1196CrossRefGoogle Scholar
  22. Cedergren J, Follin P, Forslund T et al (2003) Inducible nitric oxide synthase (NOS II) is constitutive in human neutrophils. APMIS 111:963–968PubMedCrossRefGoogle Scholar
  23. Ciofu O (2003) Pseudomonas aeruginosa chromosomal beta-lactamase in patients with cystic fibrosis and chronic lung infection – Mechanism of antibiotic resistance and target of the humoral immune response. Apmis 111:4–47Google Scholar
  24. Ciofu O, Bagge N, Hoiby N (2002) Antibodies against beta-lactamase can improve ceftazidime treatment of lung infection with beta-lactam-resistant Pseudomonas aeruginosa in a rat model of chronic lung infection. Apmis 110:881–891PubMedCrossRefGoogle Scholar
  25. Ciofu O, Fussing V, Bagge N et al (2001) Characterization of paired mucoid/non-mucoid Pseudomonas aeruginosa isolates from Danish cystic fibrosis patients: antibiotic resistance, beta-lactamase activity and RiboPrinting. J Antimicrob Chemother 48:391–396PubMedCrossRefGoogle Scholar
  26. Ciofu O, Giwercman B, Pedersen SS et al (1994) Development of antibiotic resistance in Pseudomonas aeruginosa during two decades of antipseudomonal treatment at the Danish CF center. APMIS 102:674–680PubMedCrossRefGoogle Scholar
  27. Ciofu O, Lee B, Johannesson M et al (2008) Investigation of the algT operon sequence in mucoid and non-mucoid Pseudomonas aeruginosa isolates from 115 Scandinavian patients with cystic fibrosis and in 88 in vitro non-mucoid revertants. Scandinavian Cystic Fibrosis Study Consortium. Microbiology. 154(Pt 1):103–113Google Scholar
  28. Ciofu O, Petersen TD, Jensen P et al (1999) Avidity of anti-P aeruginosa antibodies during chronic infection in patients with cystic fibrosis. Thorax 54:141–144PubMedCrossRefGoogle Scholar
  29. Ciofu O, Riis B, Pressler T et al (2005) Occurrence of hypermutable P. aeruginosa in cystic fibrosis patients is associates with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 49:2276–2282PubMedCrossRefGoogle Scholar
  30. Craig A, Mai J, Cai S et al (2009) Neutrophil recruitment to the lungs during bacterial pneumonia. Infect Immu 77:568–575CrossRefGoogle Scholar
  31. Denton M, Kerr K, Mooney L et al (2002) Transmission of Colistin-resistant Pseudomonas aeruginosa between patients attending a pediatric cystic fibrosis center. Pediatr Pulmonol 34:257–261PubMedCrossRefGoogle Scholar
  32. Denton M, Todd NJ, Littlewood JM (1996) Role of anti-pseudomonal antibiotics in the emergence of Stenotrophomonas maltophilia in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 15:402–405PubMedCrossRefGoogle Scholar
  33. Dibdin GH, Assinder SJ, Nichols WW et al (1996) Mathematical model of beta-lactam penetration into a biofilm of Pseudomonas aeruginosa while undergoing simultaneous inactivation by released beta-lactamases. J Antimicrob Chemother 38:757–769PubMedCrossRefGoogle Scholar
  34. Driffield K, Miller K, Bostock M et al (2008) Increased mutability of Pseudomonas aeruginosa in biofilms. J Antimicrob Chemother 61:1053–1056PubMedCrossRefGoogle Scholar
  35. Döring G, Conway SP, Heijerman HGM et al (2000) Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J 16:749–767PubMedCrossRefGoogle Scholar
  36. Döring G, Høiby N (2004) Early intervention and prevention of lung disease in cystic fibrosis: a European consensus. J Cystic Fibrosis 3:67–91CrossRefGoogle Scholar
  37. Egestein A, Schmidt A, Herwald H (2008) Trends in Innate Immunity. Karger, BaselGoogle Scholar
  38. Frederiksen B, Koch C, Høiby N (1999) The changing epidemiology of Pseudomonas aeruginosa infection in Danish cystic fibrosis patients, 1974–1995. Pediatr Pulmonol 28:159–166PubMedCrossRefGoogle Scholar
  39. Frederiksen B, Lanng S, Koch C et al (1996) Improved survival in the Danish cystic fibrosis centre: results of aggressive treatment. Pediatr Pulmonol 21:153–158PubMedCrossRefGoogle Scholar
  40. Frederiksen B, Pressler T, Hansen A et al (2006) Effect of aerosolised rhDNase (Pulmozyme®) on pulmonary colonization in patients with cystic fibrosis. Acta Paediatrica 95:1070–1074PubMedCrossRefGoogle Scholar
  41. Frederiksen B., Pressler T., Hansen A. et al (2006) Effect of aerosolised rhDNase (Pulmozyme®) on pulmonary colonization in patients with cystic fibrosis. Acta Paediatrica 95:1070–1074PubMedCrossRefGoogle Scholar
  42. Geller DE, Pitlick WH, Nardella PA et al (2002) Pharmacokinetics and bioavailability of aerosolized tobramycin in cystic fibrosis. Chest 122:219–226PubMedCrossRefGoogle Scholar
  43. Gibson RL, Emerson J, McNamara S et al (2003) Significant microbiological effect of inhaled tobramycin in young children with cystic fibrosis. Amer J Respir Crit Care Med 167:841–849CrossRefGoogle Scholar
  44. Giwercman B, Lambert PA, Rosdahl VT et al (1990) Rapid emergence of resistance in Pseudomonas aeruginosa in cystic fibrosis patients due to in vivo selection of stable partially derepressed beta-lactamase producing strains. J Antimicrob Chemother 26:247–259PubMedCrossRefGoogle Scholar
  45. Giwercman B, Meyer C, Lambert PA et al (1992) High-level beta-lactamase activity in sputum samples from cystic fibrosis patients during antipseudomonal treatment. Antimicrob Agents Chemother 36:71–76PubMedGoogle Scholar
  46. Goldstein W, Döring G (1986) Lysosomal enzymes from polymorphonuclear leukocytes and proteinase inhibitors in patients with cystic fibrosis. Am Rev Respir Dis 134:49–56PubMedGoogle Scholar
  47. Hansen CR, Pressler T, Høiby N et al (2008) Early aggressive eradication therapy for intermittent Pseudomonas aeruginosa airway colonization in cystic fibrosis patients: 15 years experience. J Cystic Fibrosis 7:523–530CrossRefGoogle Scholar
  48. Hansen CR, Pressler T, Koch C et al (2005) Long-term azithromycin treatment of cystic fibrosis patients with chronic P. aeruginosa infection; an observational cohort study. J Cystic Fibrosis 4:35–40CrossRefGoogle Scholar
  49. Hassett DJ, Cuppoletti J, Trapnell B et al (2002) Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Advan Drug Delivery Rev 54:1425–1443CrossRefGoogle Scholar
  50. Haussler S (2004) Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ Microbiol 6:546–551PubMedCrossRefGoogle Scholar
  51. Haussler S, Tummler B, Weissbrodt H et al (1999) Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin Infect Dis 29:621–625PubMedCrossRefGoogle Scholar
  52. Hoboth C, Hoffmann R, Eichner A et al (2009) Dynamics of adaptive microevolution of hypermutable pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J Infect Dis 200:118–130PubMedCrossRefGoogle Scholar
  53. Hoffmann N, Lee B, Hentzer M et al (2007) Azithromycin blocks quorum sensing and alginat polymer formation and increases the sensitivity to serum and stationary gowth phase killing of P. aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr-/- mice. Antimicrob Agents ChemotherGoogle Scholar
  54. Hoffmann N, Rasmussen TB, Jensen PO et al (2005a) Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis (Vol 73, pg 2504, 2005). Infec Immunity 73:5290CrossRefGoogle Scholar
  55. Hoffmann N, Rasmussen TB, Jensen PØ et al (2005b) Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis. Infect Immun 73:2504–2514PubMedCrossRefGoogle Scholar
  56. Hull J, Vervaart P, Grimwood K et al (1997) Pulmonary oxidative stress response in young children with cystic fibrosis. Thorax 52:557–560PubMedCrossRefGoogle Scholar
  57. Høiby N (1977) Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. A survey. Acta Pathol Microbiol Scand Suppl 262 (C):3–96Google Scholar
  58. Høiby N (2006) P. aeruginosa in cystic fibrosis patients resists host defenses, antibiotics. Microbe (ASM) 1:571–577Google Scholar
  59. Høiby N, Flensborg EW, Beck B et al (1977) Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. Scand J Resp Dis 58:65–79Google Scholar
  60. Høiby N, Frederiksen B, Pressler T (2005) Eradication of early Pseudomonas aeruginosa infection. J Cystic fibrosis 4:49–54CrossRefGoogle Scholar
  61. Høiby N, Johansen HK, Moser C et al (2001) Pseudomonas aeruginosa and the biofilm mode of growth. Microb Infect 3:1–13Google Scholar
  62. Høiby N, Pedersen SS (1989) Estimated risk of cross-infection with Pseudomonas aeruginosa in Danish Cystic Fibrosis patients. Acta Paediat Scand 78:395–404PubMedCrossRefGoogle Scholar
  63. Haagensen J, Klausen M, Ernst RK et al (2007) Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J Bacteriol 189:28–37PubMedCrossRefGoogle Scholar
  64. Islam S, Oh H, Jalal S et al (2009) Chromosomal resistance mechanisms for aminoglycosides in Pseudomonas aeruginosa cystic fibrosis isolates. Clin Microbiol Infect 15:60–66PubMedCrossRefGoogle Scholar
  65. Jalal S, Ciofu O, Høiby N et al (2000) Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients (Vol 44, pg 710, 2000). Antimicrob Agents Chemother 44:1410CrossRefGoogle Scholar
  66. Jelsbak L, Johansen HK, Frost A-L et al (2007) Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect Immun 75:2214–2224PubMedCrossRefGoogle Scholar
  67. Jensen PØ, Bjarnsholt T, Phipps R et al (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153:1329–1338PubMedCrossRefGoogle Scholar
  68. Jensen T, Pedersen SS, Garne S et al (1987) Colistin inhalation therapy in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. J Antimicrob Chemother 19:831–838PubMedCrossRefGoogle Scholar
  69. Johansen HK (1996) Potential of preventing Pseudomonas aeruginosa lung infections in cystic fibrosis patients: experimental studies in animals. APMIS 104:5–42Google Scholar
  70. Johansen HK, Moskowitz SM, Ciofu O et al (2008) Spread of colistin-resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. J Cystic Fibrosis 7:391–397CrossRefGoogle Scholar
  71. Keren I, Kaldalu N, Spoering A et al (2004) Persister cells and tolerance to antimicrobials. Fems Microbiol Lett 230:13–18PubMedCrossRefGoogle Scholar
  72. Kobayashi H (1995) Biofilm disease: its clinical manifestation and therapeutic possibilities of macrolides. Am J Med 99:S26–S30CrossRefGoogle Scholar
  73. Koch C, Hjelt K, Pedersen SS et al (1991) Retrospective clinical study of hypersensitivity reactions to aztreonam and six other beta-lactam antibiotics in cystic fibrosis patients receiving multiple treatment courses. Rev Infect Dis 13:S608–S611PubMedGoogle Scholar
  74. Kolpen M, Hansen CR, Bjarnsholt T et al (2010) Polymorphonuclear leukocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax 65(1):57–62Google Scholar
  75. Lang AB, Schaad UB, Rudeberg A et al (1995) Effect of high-affinity anti-Pseudomonas aeruginosa lipopolysaccharide antibodies induced by immunization on the rate of Pseudomonas aeruginosa infection in patients with cystic fibrosis. J Pediatr 127:711–717PubMedCrossRefGoogle Scholar
  76. Le Brun PPH (2001) Optimization of antibiotic inhalation therapy in cystic fibrosis. Studies on nebulized tobramycin. Development of a colistin dry powder inhaler system. University of Groningen, HollandGoogle Scholar
  77. Lee B, Haagensen JAJ, Ciofu O et al (2005) Heterogeneity of biofilms formed by non-mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol 43:5247–5255PubMedCrossRefGoogle Scholar
  78. Levy J, Smith AL, Koup JR, Williams-Warren, J, Ramsey, B (1984) Disposition of tobramycin in patients with cystic fibrosis: a prospective controlled study. J Pediat 105:117–124PubMedCrossRefGoogle Scholar
  79. Macia MD, Blanquer D, Togores B et al (2005) Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother 49:3382–3386PubMedCrossRefGoogle Scholar
  80. Macia MD, Borrell N, Perez JL et al (2004) Detection and susceptibility testing of hypermutable Pseudomonas aeruginosa strains with the Etest and disk diffusion. Antimicrob Agents Chemother 48:2665–2672PubMedCrossRefGoogle Scholar
  81. MacLeod DL, Nelson LE, Shawar RM et al (2000) Aminoglycoside-resistance mechanisms for cystic fibrosis Pseudomonas aeruginosa isolates are unchanged by long-term, intermittent, inhaled tobramycin treatment. J Infec Dis 181:1180–1184CrossRefGoogle Scholar
  82. Mandsberg LF, Ciofu O, Kirkby N et al (2009) Antibiotic resistance in P. aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob Agents Chemother 53:2483–2491PubMedCrossRefGoogle Scholar
  83. Mathee K, Ciofu O, Sternberg C et al (1999) Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349–1357PubMedCrossRefGoogle Scholar
  84. Miller RA, Britigan BE (1997) Role of oxidants in microbial pathophysiology. Clin Microbiol Rev 10:1–18PubMedGoogle Scholar
  85. Moser C, van Gennip M, Bjarnsholt T et al (2009) Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis. APMIS 117:95–107PubMedCrossRefGoogle Scholar
  86. Moskowitz SM, Foster JM, Emerson J et al (2004) Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 42:1915–1922PubMedCrossRefGoogle Scholar
  87. Oliver A, Baquero F, Blazquez J (2002) The mismatch repair system (MutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol Microbiol 43:1641–1650PubMedCrossRefGoogle Scholar
  88. Oliver A, Canton R, Campo P et al (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1253PubMedCrossRefGoogle Scholar
  89. Pamp SJ, Gjermansen M, Johansen HK et al (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the prm and mexAB-oprM genes. Mol Microbiol 68:223–240PubMedCrossRefGoogle Scholar
  90. Pedersen SS, Espersen F, Høiby N et al (1990a) Immunoglobulin-A and immunoglobulin-G antibody responses to alginates from Pseudomonas aeruginosa in patients with cystic fibrosis. J Clin Microbiol 28:747–755PubMedGoogle Scholar
  91. Pedersen SS, Høiby N, Espersen F et al (1992) Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax 47:6–13PubMedCrossRefGoogle Scholar
  92. Pedersen SS, Kharazmi A, Espersen F et al (1990b) Pseudomonas Aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect Immun 58:3363–3368PubMedGoogle Scholar
  93. Permin H, Koch C, Høiby N et al (1983) Ceftazidime treatment of chronic Pseudomonas aeruginosa respiratory tract infection in cystic fibrosis. J Antimicrob Chemother 12(supplementum A):313–323PubMedGoogle Scholar
  94. Pressler T, Frederiksen B, Skov M et al (2006) Early rise of anti-Pseudomonas antibodies and a mucoid phenotype of Pseudomonas aeruginosa are risk factors for development of chronic lung infection – a case control study. J Cystic Fibrosis 5:9–15Google Scholar
  95. Proesmans M, Balinska-Miskiewicz W, Dupont L et al (2006) Evaluating the “Leeds criteria” for Pseudomonas aeruginosa infection in a cystic fibrosis center. Eur Respir J 27:937–943PubMedGoogle Scholar
  96. Rainey PB, Travisano M (1998) Adaptive radiation in a heterogenous environment. Nature 394:69–72PubMedCrossRefGoogle Scholar
  97. Ramsey BW, Pepe MS, Quan JM et al (1999) Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. N Engl J Med 340:23–30PubMedCrossRefGoogle Scholar
  98. Ratjen F, Rietschel E, Kasel D et al (2006) Pharmacokinetics of inhaled colistin in patients with cystic fibrosis. J Antimicrob Chemother 57:306–311PubMedCrossRefGoogle Scholar
  99. Ratjen F, Tummler B (1999) Comparison of the in vitro and in vivo response to inhaled DNase in patients with cystic fibrosis. Thorax 54:91PubMedCrossRefGoogle Scholar
  100. Saiman L, Mehar F, Niu WW et al (1996) Antibiotic susceptibility of multiply resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis, including candidates for transplantation. Clin Infect Dis 23:532–537PubMedGoogle Scholar
  101. Shah PL, Scott SF, Fuchs HJ et al (1995) Medium term treatment of stable stage cystic fibrosis with recombinant human DNase I. Thorax 50:333–338PubMedCrossRefGoogle Scholar
  102. Smith AL, Fiel SB, MayerHamblett N et al (2003) Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration – Lack of association in cystic fibrosis. Chest 123:1495–1502PubMedCrossRefGoogle Scholar
  103. Smith EE, Buckley DG, Wu Z et al (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 103(22):8487–8492Google Scholar
  104. Song ZJ, Wu H, Ciofu O et al (2003) Pseudomonas aeruginosa alginate is refractory to Th1 immune response and impedes host immune clearance in a mouse model of acute lung infection. J Med Microbiol 52:731–740PubMedCrossRefGoogle Scholar
  105. Spiers AJ, Buckling A, Rainey PB (2000) The causes of Pseudomonas diversity. Microbiology 146:2345–2350PubMedGoogle Scholar
  106. Stover CK, Pham XQ, Erwin AL et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964PubMedCrossRefGoogle Scholar
  107. Tateda K, Comte R, Pechere JC et al (2001) Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 45:1930–1933PubMedCrossRefGoogle Scholar
  108. Tiddens HAWM (2002) Detecting early structural lung damage in cystic fibrosis. Pediatr Pulmonol 34:228–231PubMedCrossRefGoogle Scholar
  109. Valerius NH, Koch C, Hoiby N (1991) Prevention of chronic Pseudomonas aeruginosa colonisation in cystic fibrosis by early treatment. Lancet 338:725–726PubMedCrossRefGoogle Scholar
  110. WestbrockWadman S, Sherman DR, Hickey MJ et al (1999) Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother 43:2975–2983Google Scholar
  111. Westh JB (2001) Pulmonary physiology and pathophysiology. Lippincott Williams & Wilkins, Philadelphia, PAGoogle Scholar
  112. Wolter DJ, Black JA, Lister PD et al (2009) Multiple genotypic changes in hypersusceptible strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients do not always correlate with the phenotpe. J Antimicrob Chemother 64:294–300PubMedCrossRefGoogle Scholar
  113. Worlitzsch D, Tarran R, Ulrich M et al (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317–325PubMedGoogle Scholar
  114. Wyckoff TJO, Thomas B, Hassett DJ et al (2002) Static growth of mucoid Pseudomonas aeruginosa selects for non-mucoid variants that have acquired flagellum-dependent motility. Microbiology Sgm 148:3423–3430Google Scholar
  115. Yang L, Haagensen JAJ, Jelsbak L et al (2008) In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infection. J Bacteriol 190:2767–2776PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Niels Høiby
    • 1
    • 2
  • Helle Krogh Johansen
    • 3
  • Claus Moser
    • 2
  • Oana Ciofu
    • 4
  • Peter Østrup Jensen
    • 5
  • Mette Kolpen
    • 6
  • Lotte Mandsberg
    • 7
  • Michael Givskov
    • 8
  • Søren Molin
    • 9
  • Thomas Bjarnsholt
    • 10
    • 2
  1. 1.Faculty of Health Sciences, Department of International Health, Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department for Clinical MicrobiologyH:S RigshospitaletCopenhagen ØDenmark
  3. 3.Department for Clinical MicrobiologyRigshospitaletCopenhagenDenmark
  4. 4.Faculty of Health Sciences, Department of International Health, Immunology and Microbiology, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
  5. 5.Department for Clinical MicrobiologyH:S RigshospitaletCopenhagen ØDenmark
  6. 6.Department of Clinical Microbiology and Danish Cystic Fibrosis CenterRigshospitaletCopenhagenDenmark
  7. 7.Institute of International Health, Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
  8. 8.Department of International Health, Immunology and Microbiology, Faculty of Health SciencesUniversity of CopenhagenCopenhagen NDenmark
  9. 9.Department of Systems BiologyTechnical University of DenmarkBuilding 301, 2800 KgsDenmark
  10. 10.Faculty of Health Sciences,Department of International Health, Immunology and MicrobiologyUniversity of CopenhagenCopenhagen NDenmark

Personalised recommendations