Advertisement

Integrins and Signal Transduction

  • Sara Cabodi
  • Paola Di Stefano
  • Maria del Pilar Camacho Leal
  • Agata Tinnirello
  • Brigitte Bisaro
  • Virginia Morello
  • Laura Damiano
  • Simona Aramu
  • Daniele Repetto
  • Giusy Tornillo
  • Paola Defilippi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 674)

Abstract

Integrin signaling has a critical function in organizing cells in tissues during both embryonic development and tissue repair. Following their binding to the extracellular ligands, the intracellular signaling pathways triggered by integrins are directed to two major functions: organization of the actin cytoskeleton and regulation of cell behaviour including survival, differentiation and growth. Basic research conducted in the past twelve years has lead to remarkable breakthroughs in this field. Integrins are catalytically inactive and translate positional cues into biochemical signals by direct and/or functional association with intracellular adaptors, cytosolic tyrosine kinases or growth factor and cytokine receptors. The purpose of this chapter is to highlight recent experimental and conceptual advances in integrin signaling with particular emphasis on the ability of integrins to regulate Fak/Src family kinases (SFKs) activation and the cross-talk with soluble growth factors receptors and cytokines.

Keywords

Epidermal Growth Factor Receptor Focal Adhesion Kinase Focal Adhesion Cytokine Receptor Integrin Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hynes RO. The emergence of integrins: a personal and historical perspective. Matrix Biol 2004; 23:333–40.CrossRefPubMedGoogle Scholar
  2. 2.
    Sastry SK, Burridge K. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp Cell Res 2000; 261:25–36.CrossRefPubMedGoogle Scholar
  3. 3.
    Lock JG, Wehrle-Haller B, Stromblad S. Cell-matrix adhesion complexes: master control machinery of cell migration. Semin Cancer Biol 2008; 18:65–76.CrossRefPubMedGoogle Scholar
  4. 4.
    Arnaout MA, Goodman SL, Xiong JP. Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol 2007; 19:495–507.CrossRefPubMedGoogle Scholar
  5. 5.
    Garcia-Alvarez B, de Pereda JM, Calderwood DA et al. Structural determinants of integrin recognition by talin. Mol Cell 2003; 11:49–58.CrossRefPubMedGoogle Scholar
  6. 6.
    Vinogradova O, Velyvis A, Velyviene A et al. A structural mechanism of integrin a(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmic face. Cell 2002; 110:587–97.CrossRefPubMedGoogle Scholar
  7. 7.
    Ma YQ, Qin J, Wu C et al. Kindlin-2 (Mig-2): a co-activator of beta3 integrins. J Cell Biol 2008; 181:439–46.CrossRefPubMedGoogle Scholar
  8. 8.
    Montanez E, Ussar S, Schifferer M et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev 2008; 22:1325–30.CrossRefPubMedGoogle Scholar
  9. 9.
    Moser M, Nieswandt B, Ussar S et al. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med 2008; 14:325–30.CrossRefPubMedGoogle Scholar
  10. 10.
    Brakebusch C, Fassler R. The integrin-actin connection, an eternal love affair. EMBO J 2003; 22:2324–33.CrossRefPubMedGoogle Scholar
  11. 11.
    Legate KR, Montanez E, Kudlacek O et al. ILK, PINCH and parvin: the tIPP of integrin signaling. Nat Rev Mol Cell Biol 2006; 7:20–31.CrossRefPubMedGoogle Scholar
  12. 12.
    Nayal A, Webb DJ, Horwitz AF. Talin: an emerging focal point of adhesion dynamics. Curr Opin Cell Biol 2004; 16:94–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Ziegler WH, Liddington RC, Critchley DR. The structure and regulation of vinculin. Trends Cell Biol 2006; 16:453–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Dike LE, Farmer SR. Cell adhesion induces expression of growth-associated genes in suspension-arrested fibroblasts. Proc Natl Acad Sci USA 1988; 85:6792–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Eierman DF, Johnson CE, Haskill JS. Human monocyte inflammatory mediator gene expression is selectively regulated by adherence substrates. J Immunol 1989; 142:1970–6.PubMedGoogle Scholar
  16. 16.
    Defilippi P, Tarone G, Gismondi A, Santoni A, eds. Integrins and Signal Transduction. Austin/New York: Landes Bioscience/Springer, 2006.Google Scholar
  17. 17.
    Giancotti FG, Tarone G. Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu Rev Cell Dev Biol 2003; 19:173–206.CrossRefPubMedGoogle Scholar
  18. 18.
    Miranti CK, Brugge JS. Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 2002; 4:E83–90.CrossRefPubMedGoogle Scholar
  19. 19.
    Schwartz MA, Ginsberg MH. Networks and crosstalk: integrin signalling spreads. Nat Cell Biol 2002; 4:E65–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 2006; 18:516–23.CrossRefPubMedGoogle Scholar
  21. 21.
    Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci 2003; 116:1409–16.CrossRefPubMedGoogle Scholar
  22. 22.
    van Nimwegen MJ, van de Water B. Focal adhesion kinase: a potential target in cancer therapy. Biochem Pharmacol 2007; 73:597–609.CrossRefPubMedGoogle Scholar
  23. 23.
    Sieg DJ, Hauck CR, Ilic D et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2000; 2:249–56.CrossRefPubMedGoogle Scholar
  24. 24.
    Lim ST, Chen XL, Lim Y et al. Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation. Mol Cell 2008; 29:9–22.CrossRefPubMedGoogle Scholar
  25. 25.
    Yeatman TJ. A renaissance for SRC. Nat Rev Cancer 2004; 4:470–80.CrossRefPubMedGoogle Scholar
  26. 26.
    Irby RB, Mao W, Coppola D et al. Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 1999; 21:187–90.CrossRefPubMedGoogle Scholar
  27. 27.
    Di Stefano P, Damiano L, Cabodi S et al. p140Cap protein suppresses tumour cell properties, regulating Csk and Src kinase activity. EMBO J 2007; 26:2843–55.CrossRefPubMedGoogle Scholar
  28. 28.
    Moro L, Dolce L, Cabodi S et al. Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J Biol Chem 2002; 277:9405–14.CrossRefPubMedGoogle Scholar
  29. 29.
    de Virgilio M, Kiosses WB, Shattil SJ. Proximal, selective and dynamic interactions between integrin alphaIIbbeta3 and protein tyrosine kinases in living cells. J Cell Biol 2004; 165:305–11.CrossRefPubMedGoogle Scholar
  30. 30.
    Defilippi P, Di Stefano P, Cabodi S. p130Cas: a versatile scaffold in signaling networks. Trends Cell Biol 2006; 16:257–63.CrossRefPubMedGoogle Scholar
  31. 31.
    Ridley AJ, Schwartz MA, Burridge K et al. Cell migration: integrating signals from front to back. Science 2003; 302:1704–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Webb DJ, Donais K, Whitmore LA et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 2004; 6:154–61.CrossRefPubMedGoogle Scholar
  33. 33.
    Goldberg GS, Alexander DB, Pellicena P et al. Src phosphorylates Cas on tyrosine 253 to promote migration of transformed cells. J Biol Chem 2003; 278:46533–40.CrossRefPubMedGoogle Scholar
  34. 34.
    Shin NY, Dise RS, Schneider-Mergener J et al. Subsets of the major tyrosine phosphorylation sites in Crk-associated substrate (CAS) are sufficient to promote cell migration. J Biol Chem 2004; 279:38331–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang XT, Li LY, Mu XL et al. The EGFR mutation and its correlation with response of gefitinib in previously treated Chinese patients with advanced nonsmall-cell lung cancer. Ann Oncol 2005; 16:1334–42.CrossRefPubMedGoogle Scholar
  36. 36.
    Burridge K, Wennerberg K. Rho and Rac take center stage. Cell 2004; 116:167–79.CrossRefPubMedGoogle Scholar
  37. 37.
    Chang LC, Huang CH, Cheng CH et al. Differential effect of the focal adhesion kinase Y397F mutant on v-Src-stimulated cell invasion and tumor growth. J Biomed Sci 2005; 12:571–85.CrossRefPubMedGoogle Scholar
  38. 38.
    Schwartz MA, Assoian RK. Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 2001; 114:2553–60.PubMedGoogle Scholar
  39. 39.
    Assoian RK. Control of the G1 phase cyclin-dependent kinases by mitogenic growth factors and the extracellular matrix. Cytokine Growth Factor Rev 1997; 8:165–70.CrossRefPubMedGoogle Scholar
  40. 40.
    Carrano AC, Pagano M. Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J Cell Biol 2001; 153:1381–90.CrossRefPubMedGoogle Scholar
  41. 41.
    Comoglio PM, Boccaccio C, Trusolino L. Interactions between growth factor receptors and adhesion molecules: breaking the rules. Curr Opin Cell Biol 2003; 15:565–71.CrossRefPubMedGoogle Scholar
  42. 42.
    Boeri Erba E, Bergatto E, Cabodi S et al. Systematic analysis of the epidermal growth factor receptor by mass spectrometry reveals stimulation-dependent multisite phosphorylation. Mol Cell Proteomics 2005; 4:1107–21.CrossRefPubMedGoogle Scholar
  43. 43.
    Boeri Erba E, Matthiesen R, Bunkenborg J et al. Quantitation of multisite EGF receptor phosphorylation using mass spectrometry and a novel normalization approach. J Proteome Res 2007; 6:2768–85.CrossRefPubMedGoogle Scholar
  44. 44.
    Reginato MJ, Mills KR, Paulus JK et al. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol 2003; 5:733–40.CrossRefPubMedGoogle Scholar
  45. 45.
    Monaghan-Benson E, McKeown-Longo PJ. Urokinase-type plasminogen activator receptor regulates a novel pathway of fibronectin matrix assembly requiring Src-dependent transactivation of epidermal growth factor receptor. J Biol Chem 2006; 281:9450–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Wang R, Ferrell LD, Faouzi S et al. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol 2001; 153:1023–34.CrossRefPubMedGoogle Scholar
  47. 47.
    Defilippi P, Rosso A, Dentelli P et al. ta1 Integrin and IL-3R coordinately regulate STAT5 activation and anchorage-dependent proliferation. J Cell Biol 2005; 168:1099–108.Google Scholar
  48. 48.
    Baron V, Schwartz M. Cell adhesion regulates ubiquitin-mediated degradation of the platelet-derived growth factor receptor beta. J Biol Chem 2000; 275:39318–23.CrossRefPubMedGoogle Scholar
  49. 49.
    Goel HL, Fornaro M, Moro L et al. Selective modulation of type 1 insulin-like growth factor receptor signaling and functions by beta1 integrins. J Cell Biol 2004; 166:407–18.CrossRefPubMedGoogle Scholar
  50. 50.
    Roovers K, Assoian RK. Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays 2000; 22:818–26.CrossRefPubMedGoogle Scholar
  51. 51.
    Aplin AE, Stewart SA, Assoian RK et al. Integrin-mediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk-1. J Cell Biol 2001; 153:273–82.CrossRefPubMedGoogle Scholar
  52. 52.
    Ivankovic-Dikic I, Gronroos E, Blaukat A et al. Pyk2 and FAK regulate neurite outgrowth induced by growth factors and integrins. Nat Cell Biol 2000; 2:574–81.CrossRefPubMedGoogle Scholar
  53. 53.
    Eliceiri BP, Puente XS, Hood JD et al. Src-mediated coupling of focal adhesion kinase to integrin alpha(v) beta5 in vascular endothelial growth factor signaling. J Cell Biol 2002; 157:149–60.CrossRefPubMedGoogle Scholar
  54. 54.
    Mariotti A, Kedeshian PA, Dans M et al. EGF-R signaling through Fyn kinase disrupts the function of integrin alpha6beta4 at hemidesmosomes: role in epithelial cell migration and carcinoma invasion. J Cell Biol 2001; 155:447–58.CrossRefPubMedGoogle Scholar
  55. 55.
    Trusolino L, Bertotti A, Comoglio PM. A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell 2001; 107:643–54.CrossRefPubMedGoogle Scholar
  56. 56.
    Hehlgans S, Haase M, Cordes N. Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta 2007; 1775:163–80.PubMedGoogle Scholar
  57. 57.
    Lahlou H, Sanguin-Gendreau V, Zuo D et al. Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proc Natl Acad Sci USA 2007; 104:20302–7.CrossRefPubMedGoogle Scholar
  58. 58.
    White DE, Kurpios NA, Zuo D et al. Targeted disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 2004; 6:159–70.CrossRefPubMedGoogle Scholar
  59. 59.
    Guy CT, Muthuswamy SK, Cardiff RD et al. Activation of the c-Src tyrosine kinase is required for the induction of mammary tumors in transgenic mice. Genes Dev 1994; 8:23–32.CrossRefPubMedGoogle Scholar
  60. 60.
    Guo W, Pylayeva Y, Pepe A et al. Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 2006; 126:489–502.CrossRefPubMedGoogle Scholar
  61. 61.
    Bon G, Folgiero V, Di Carlo S et al. Involvement of alpha6beta4 integrin in the mechanisms that regulate breast cancer progression. Breast Cancer Res 2007; 9:203.CrossRefPubMedGoogle Scholar
  62. 62.
    Brakebusch C, Fassler R. beta 1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev 2005; 24:403–11.CrossRefPubMedGoogle Scholar
  63. 63.
    Christofori G. New signals from the invasive front. Nature 2006; 441:444–50.CrossRefPubMedGoogle Scholar
  64. 64.
    Elliott BE, Ekblom P, Pross H et al. Anti-beta 1 integrin IgG inhibits pulmonary macrometastasis and the size of micrometastases from a murine mammary carcinoma. Cell Adhes Commun 1994; 1:319–32.CrossRefPubMedGoogle Scholar
  65. 65.
    Khalili P, Arakelian A, Chen G et al. A nonRGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo. Mol Cancer Ther 2006; 5:2271–80.CrossRefPubMedGoogle Scholar
  66. 66.
    Kren A, Baeriswyl V, Lehembre F et al. Increased tumor cell dissemination and cellular senescence in the absence of beta1-integrin function. EMBO J 2007; 26:2832–42.CrossRefPubMedGoogle Scholar
  67. 67.
    Serini G, Napione L, Arese M et al. Besides adhesion: new perspectives of integrin functions in angiogenesis. Cardiovasc Res 2008; 78:213–22.CrossRefPubMedGoogle Scholar
  68. 68.
    Huveneers S, Truong H, Danen HJ. Integrins: signaling, disease and therapy. Int J Radiat Biol 2007; 83:743–51.CrossRefPubMedGoogle Scholar
  69. 69.
    Cabodi S, Morello V, Masi A et al. Convergence of integrins and EGF receptor signaling via P13K/Akt/ FoxO pathway in early gene Egr-1 expression. J Cell Physiol. 2009; 218:294–303.CrossRefPubMedGoogle Scholar
  70. 70.
    Cabodi S, Tinnirello A, Di Stefano P et al. p130Cas as a new regulator of mammary epithelial cell proliferation, survival, and HER2-neu oncogene-dependent breast tumorigenesis. Cancer Res. 2006; 1:4672–4680.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Sara Cabodi
    • 1
  • Paola Di Stefano
    • 1
  • Maria del Pilar Camacho Leal
    • 1
  • Agata Tinnirello
    • 1
  • Brigitte Bisaro
    • 1
  • Virginia Morello
    • 1
  • Laura Damiano
    • 1
  • Simona Aramu
    • 1
  • Daniele Repetto
    • 1
  • Giusy Tornillo
    • 1
  • Paola Defilippi
    • 1
  1. 1.Molecular and Biotechnology Center and Department of Genetics, Biology and BiochemistryUniversity of TorinoTorinoItaly

Personalised recommendations