Modelling the Transmission of Trypanosoma cruzi: The Need for an Integrated Genetic Epidemiological and Population Genomics Approach

  • Michel Tibayrenc
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 673)


This chapter describes what should be an integrated approach to the genetic epidemiology and population genomics of Chagas disease. Many studies have been conducted on the genetic diversity of Trypanosoma cruzi and the various triatomine bug species able to transmit Chagas disease. Far less research has analyzed the role played by the host’s genetic variability on the transmission and severity of the disease. An integrated genetic epidemiology/population genomics approach would analyze these three components of the transmission chain together as well as their possible interactions (co-evolution phenomena). This is facilitated by the recent impressive progress in mega biotechnologies and by the fact that Chagas disease is an ideal model for experimental evolution approaches.


Trypanosoma Cruzi Human Genetic Diversity Buthionine Sulfoximine Clonal Genotype Triatoma Infestans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tibayrenc M. Genetic epidemiology of parasitic protozoa and other infectious agents: the need for an integrated approach. Int J Parasitol 1998; 28:85–104.CrossRefPubMedGoogle Scholar
  2. 2.
    Tibayrenc M. Towards an integrated genetic epidemiology of parasitic protozoa and other pathogens. Annual Review of Genetics 1999; 33:449–77.CrossRefPubMedGoogle Scholar
  3. 3.
    Tibayrenc M. Population genetics of parasitic protozoa and other microorganisms. Advances in Parasitology (eds. Baker JR, Muller R, Rollinson D.): 1995; 36:47–115.Google Scholar
  4. 4.
    Tibayrenc M. Towards a unified evolutionary genetics of microorganisms. Ann Rev Microbiol 1996; 50:401–29.CrossRefGoogle Scholar
  5. 5.
    Tibayrenc M. Integrated genetic epidemiology of infectious diseases: the Chagas model. Mem Inst Oswaldo Cruz 1998; 93:577–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Tibayrenc M. Molecular epidemiology and evolutionary genetics of pathogens. In: Tibayrenc, M. ed. Encyclopedia of Infectious Diseases: Modern Methodologies. Hoboken: Wiley & Sons 2007; 337–55.CrossRefGoogle Scholar
  7. 7.
    Milkman R. Electrophoretic variation in Escherichia coli from natural sources. Science 1973; 182:1024–26.CrossRefPubMedGoogle Scholar
  8. 8.
    Kilgour V, Godfrey DG. Species-characteristic isoenzymes of two aminotransferases in Trypanosomes. Nature New Biol 1973; 244:69–70.CrossRefPubMedGoogle Scholar
  9. 9.
    Miles MA, Souza A, Povoa M et al. Isozymic heterogeneity of Trypanosoma cruzi in the first autochtonous patients with Chagas’ disease in Amazonian Brazil. Nature 1978; 272:819–21.CrossRefPubMedGoogle Scholar
  10. 10.
    Tibayrenc M, Cariou ML, Solignac M. Interprétation génétique des zymogrammes de flagellés des genres Trypanosoma et Leishmania. C R Acad Sci Paris 1981; 292:623–25.Google Scholar
  11. 11.
    Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual. Cold spring harbor laboratory. 1980.Google Scholar
  12. 12.
    Morel CM, Chiari E, Plessmann Camargo E et al. Strains and clones of Trypanosoma cruzi can be characterized by pattern of restriction endonuclease products of kinetoplast DNA minicircles. Proc Natl Acad Sci USA 1980; 77:6810–14.CrossRefPubMedGoogle Scholar
  13. 13.
    Souto RP, Fernandes O, Macedo AM et al. DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Molecular and Biochemical Parasitology 1996; 83:141–52.CrossRefPubMedGoogle Scholar
  14. 14.
    Oliveira RP, Broude NE, Macedo AM et al. Probing the genetic population structure of Trypanosoma cruzi with polymorphic microsatellites. Proc Natl Acad Sci USA 1998; 95:3776–80.CrossRefPubMedGoogle Scholar
  15. 15.
    Tibayrenc M, Neubauer K, Barnabé C et al. Genetic characterization of six parasitic protozoa: parity of random-primer DNA typing and multilocus isoenzyme electrophoresis. Proc Natl Acad Sci USA 1993; 90:1335–39.CrossRefPubMedGoogle Scholar
  16. 16.
    El-Sayed NM, Myler PJ, Bartholomeu DC et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 2005; 309:409–15.CrossRefPubMedGoogle Scholar
  17. 17.
    Tibayrenc M. The species concept in parasites and other pathogens: a pragmatic approach? Trends Parasitol 2006; 22:66–70.CrossRefPubMedGoogle Scholar
  18. 18.
    Ørskov F, Ørskov I. Summary of a workshop on the clone concept in the epidemiology, taxonomy and evolution of the Enterobacteriaceae and other Bacteria. J Infect Diseases 1983; 148:346–57.Google Scholar
  19. 19.
    Tibayrenc M, Cariou ML, Solignac M et al. Arguments génétiques contre l’existence d’une sexualité actuelle chez Trypanosoma cruzi; implications taxinomiques. C R Acad Sci Paris 1981; 293:207–9.Google Scholar
  20. 20.
    Tibayrenc M, Ward P, Moya A et al. Natural populations of Trypanosoma cruzi, the agent of Chagas’ disease, have a complex multiclonal structure. Proc Natl Acad Sci USA 1986; 83:115–19.CrossRefPubMedGoogle Scholar
  21. 21.
    Anonymous. Taxonomy of Trypanosoma cruzi: a commentary on characterization and nomenclature. Memorias Instituto Oswaldo Cruz 1999; 94(Suppl 1):181–84.Google Scholar
  22. 22.
    Brisse S, Barnabé C, Tibayrenc M. Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. Int J parasitol 2000; 30:35–44.CrossRefPubMedGoogle Scholar
  23. 23.
    Bogliolo AR, Lauriapires L, Gibson WC. Polymorphisms in Trypanosoma cruzi: Evidence of genetic recombination. Acta Tropica 1996; 61:31–40.CrossRefPubMedGoogle Scholar
  24. 24.
    Carrasco HJ, Frame IA, Valente SA et al. Genetic exchange as a possible source of genomic diversity in sylvatic populations of Trypanosoma cruzi. Am J Trop Med Hyg 1996; 54:418–24.PubMedGoogle Scholar
  25. 25.
    Machado CA, Ayala FJ. Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi. Proc Natl Acad Sci USA 2001; 98:7396–401.CrossRefPubMedGoogle Scholar
  26. 26.
    Brisse S, Henriksson J, Barnabé C et al. Evidence for genetic exchange and hybridization in Trypanosoma cruzi based on nucleotide sequences and molecular karyotype. Infection, Genetics and Evolution 2003; 2:173–83.CrossRefPubMedGoogle Scholar
  27. 27.
    Gaunt MW, Yeo M, Frame IA et al. Mechanism of genetic exchange in American trypanosomes. Nature 2003; 421:936–939.CrossRefPubMedGoogle Scholar
  28. 28.
    Miles MA, Povoa M, Prata A et al. Do radically dissimilar Trypanosoma cruzi strains (zymodemes) cause Venezuelan and Brazilian forms of Chagas’ disease? Lancet 1981; 8234:1336–40.Google Scholar
  29. 29.
    Laurent JP, Barnabé C, Quesney V et al. Impact of clonal evolution on the biological diversity of Trypanosoma cruzi. Parasitology 1997; 114:213–18.CrossRefPubMedGoogle Scholar
  30. 30.
    De Lana M, Pinto A Da S, Barnabé C et al. Trypanosoma cruzi: compared vectorial transmissibility of 3 major clonal genotypes by Triatoma infestans. Exp Parasitology 1998; 90:20–5.CrossRefGoogle Scholar
  31. 31.
    Pinto A da S, de Lana M, Bastrenta B et al. Compared vectorial transmissibility of pure and mixed clonal genotypes of Trypanosoma cruzi in Triatoma infestans. Parasitol Res 1998; 84:348–53.CrossRefPubMedGoogle Scholar
  32. 32.
    Revollo S, Oury B, Laurent JP et al. Trypanosoma cruzi: impact of clonal evolution of the parasite on its biological and medical properties. Exp Parasitol 1998; 89:30–9.CrossRefPubMedGoogle Scholar
  33. 33.
    De Lana M, Pinto A, Bastrenta B et al. Trypanosoma cruzi: Infectivity of clonal genotypes infections in acute and chronic phases in mice. Exp Parasitol 2000; 96:61–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Pinto AS, de Lana M, Britto C et al. Experimental Trypanosoma cruzi biclonal infection in Triatoma infestans: Detection of distinct clonal genotypes using kinetoplast DNA probes. Int J Parasitol 2000; 30:843–848.CrossRefGoogle Scholar
  35. 35.
    Toledo MJ de O, de Lana M, Carneiro CM et al. Impact of Trypanosoma cruzi clonal evolution on its biological properties in mice. Exp Parasitol 2002; 100:161–72.CrossRefPubMedGoogle Scholar
  36. 36.
    Toledo MJ de O, Bahia MT, Carneiro CM et al. Chemotherapy with benznidazole and itraconazole for mice infected with different Trypanosoma cruzi clonal genotypes. Antimicrobial Agents and Chemotherapy 2003; 47:223–30.CrossRefPubMedGoogle Scholar
  37. 37.
    Villarreal D, Barnabé C, Sereno D et al. Lack of correlation between in vitro susceptibility to benznidazole and phylogenetic diversity of Trypanosoma cruzi, the agent of Chagas disease. Exp Parasitol 2004; 108:24–31.CrossRefPubMedGoogle Scholar
  38. 38.
    Vago AR, Andrade LO, Leite AA et al. Genetic characterization of Trypanosoma cruzi directly from tissues of patients with chronic Chagas disease: differential distribution of genetic types into diverse organs. Am J Pathology 2000; 156:1805–09.Google Scholar
  39. 39.
    Lent H, Wygodzinsky P. Revision of the triatominae (Hemiptera, Reduviidae) and their significance as vectors of Chagas disease. Bull Amer Mus Nat Hist 1979; 163:127–516.Google Scholar
  40. 40.
    Dujardin JP, Tibayrenc M. Etude de 11 enzymes et données de génétique formelle pour 19 loci isoenzymatiques chez Triatoma infestans (Hemiptera: Rediviidae). Ann Soc belge Méd Trop 1985; 65:271–80.Google Scholar
  41. 41.
    Anderson JM, Lai JE, Dotson EM et al. Identification and characterization of microsatellite markers in the Chagas disease vector Triatoma dimidiata. Infect Genet Evol 2002; 1:243–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Dumonteil E, Tripet F, Ramirez-Sierra MJ et al. Assessment of Triatoma dimidiata dispersal in the Yucatan Peninsula of Mexico by morphometry and microsatellite markers. Am J Trop Med Hyg 2007; 76:930–7.PubMedGoogle Scholar
  43. 43.
    Pacheco RS, Almeida CE, Costa J et al. RAPD analyses and rDNA intergenic-spacer sequences discriminate Brazilian populations of Triatoma rubrovaria (Reduviidae: Triatominae). Ann Trop Med Parasitol 2003; 97:757–68.CrossRefPubMedGoogle Scholar
  44. 44.
    Garcia AL, Carrasco HJ, Schofield CJ et al. Random amplification of polymorphic DNA as a tool for taxonomic studies of Triatomine bugs (Hemiptera: Reduviidae). J Med Entomol 1998; 35:38–45.PubMedGoogle Scholar
  45. 45.
    Sainz AC, Mauro LV, Moriyama EN et al. Phylogeny of Triatomine vectors of Trypanosoma cruzi suggested by mitochondrial DNA sequences. Genetica 2004; 121:229–40.CrossRefPubMedGoogle Scholar
  46. 46.
    Martínez FH, Villalobos GC, Cevallos AM et al. Taxonomic study of the Phyllosoma complex and other Triatomine (Insecta: Hemiptera: Reduviidae) species of epidemiological importance in the transmission of Chagas disease: using ITS-2 and mtCytB sequences. Mol Phylogenet Evol 2006; 41:279–87.CrossRefPubMedGoogle Scholar
  47. 47.
    Bargues MD, Marcilla A, Ramsey JM et al. Nuclear rDNA-based molecular clock of the evolution of triatominae (Hemiptera: reduviidae), vectors of Chagas disease. Mem Inst Oswaldo Cruz 2000; 95:567–73.CrossRefPubMedGoogle Scholar
  48. 48.
    Bargues MD, Klisiowicz DR, Gonzalez-Candelas F et al. Phylogeography and genetic variation of Triatoma dimidiata, the main chagas disease vector in central America and its position within the genus Triatoma. Plos Neglect Infec Dis 2008; 2:e233.CrossRefGoogle Scholar
  49. 49.
    Perez R, Panzera Y, Scafiezzo S et al. Cytogenetics as a tool for Triatomine species distinction (Hemiptera-Reduviidae). Mem Inst Oswaldo Cruz 1992; 87:353–61.CrossRefPubMedGoogle Scholar
  50. 50.
    Rodríguez Rodríguez J, Fuentes González O, Nodarse JF et al. Morphometric changes of Triatoma flavida Neiva, 1911 (Hemiptera: Triatominae) in the transition from sylvatic to laboratory conditions. Rev Inst Med Trop Sao Paulo 2007; 49:127–30.PubMedGoogle Scholar
  51. 51.
    Feliciangeli MD, Sanchez-Martin M, Marrero R et al. Morphometric evidence for a possible role of Rhodnius prolixus from palm trees in house re-infestation in the State of Barinas (Venezuela). Acta Trop 2007; 101:169–77.CrossRefPubMedGoogle Scholar
  52. 52.
    Guedes PM, Veloso VM, Gollob KJ et al. IgG isotype profile is correlated with cardiomegaly in Beagle dogs infected with distinct Trypanosoma cruzi strains. Vet Immunol Immunopathol 2008; 124:163–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Guedes PM, Veloso VM, Caliari MV et al. Trypanosoma cruzi high infectivity in vitro is related to cardiac lesions during long-term infection in Beagle dogs. Mem Inst Oswaldo Cruz 2007; 102:141–7.PubMedGoogle Scholar
  54. 54.
    Barr SC, Warner KL, Kornreic BG et al. A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruzi. Antimicrob Agents Chemother 2005; 49:5160–1.CrossRefPubMedGoogle Scholar
  55. 55.
    Barr SC, Pannabecker TL, Gilmour RF Jr et al. Upregulation of cardiac cell plasma membrane calcium pump in a canine model of Chagas disease. J Parasitol 2003; 89:381–4CrossRefPubMedGoogle Scholar
  56. 56.
    Cuervo H, Pineda MA, Aoki MP et al. Inducible nitric oxide synthase and arginase expression in heart tissue during acute Trypanosoma cruzi infection in mice: arginase I is expressed in infiltrating CD68(+) Macrophages. J Infect Dis 2008; [Epub ahead of print].Google Scholar
  57. 57.
    Faúndez M, López-Muñoz R, Torres G et al. Buthionine sulfoximine has anti-trypanosoma cruzi activity in a murine model of acute Chagas’ disease and enhances the efficacy of nifurtimox. Antimicrob Agents Chemother 2008; 52:1837–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Tibayrenc M. Human genetic diversity and epidemiology of parasitic and other transmissible diseases. Adv Parasitol 2007; 64:378–428.Google Scholar
  59. 59.
    Garcia A, Marquet S, Bucheton B et al. Linkage analysis of blood plasmodium falciparum levels: interest of the 5q31-q33 chromosome region. Am J Trop Med Hyg 1998; 58:705–9.PubMedGoogle Scholar
  60. 60.
    Bellamy R, Beyers N, McAdam KP et al. Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci USA 2000; 97:8005–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Abel L, Sanchez FO, Oberti J et al. Susceptibility to leprosy is linked to the human NRAMP1 gene. J Infect Dis 1998; 177:133–45.CrossRefPubMedGoogle Scholar
  62. 62.
    Dessein AJ, Marquet S, Henri S et al. Infection and disease in human schistosomiasis mansoni are under distinct major gene control. Microbes and Infection 1999; 1:561–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Bucheton B, Abel L, El-Safi S et al. A major susceptibility locus on chromosome 22q12 plays a critical role in the control of kala-azar. Am J Hum Genet 2003; 73:1052–60.CrossRefPubMedGoogle Scholar
  64. 64.
    Brenière SF, Poch O, Selaes H et al. Specific humoral depression in chronic patients infected by Trypanosoma cruzi. Revista do Instuto de Medicina Tropical Sao Paulo 1984; 26:254–8.Google Scholar
  65. 65.
    Kierzenbaum F. Is there autoimmunity in chagas disease? Parasitology Today 1985; 1:4–6.CrossRefGoogle Scholar
  66. 66.
    Zicker F, Slith PG, Netto JCA et al. Activity, opportunity for reinfection and sibling history of heart diseases as risk factors for Chagas’ cardiopathy. Amer J Trop Med Hyg 1990; 43:498–505.Google Scholar
  67. 67.
    Morini JC, Berra H, Davila HO et al. Alteration among first degree relatives with serological evidence of Trypanosoma cruzi infection. A sibship study. Mem Inst Oswaldo Cruz 1994; 89:371–5.PubMedGoogle Scholar
  68. 68.
    Fae KC, Drigo SA, Cuha-Neto E et al. HLA and beta-myosin heavy chain do not influence susceptibility to Chagas disease cardiomyopathy. Microbes and Infection 2000; 2:745–51.CrossRefPubMedGoogle Scholar
  69. 69.
    Fernandes-Mestre MT, Layrisse Z, Montagnani S et al. Influence of the HLA class II polymorphism in chronic Chagas disease. Parasite Immunol 1998; 20:197–203.Google Scholar
  70. 70.
    Williams-Blangero S, VandeBerg JL, Blangero J et al. Genetic epidemiology of seropositivity for T. cruzi infection in rural Goiás, Brazil. Am J Trop Med Hyg 1997; 57:538–43.PubMedGoogle Scholar
  71. 71.
    Barbossa CAA, Morton NE, Pao DC et al. Biological an cultural determinants of immunoglobulin levels in a Brazilian population with Chagas’ disease. Human Genetics 1981; 59:161–3.CrossRefGoogle Scholar
  72. 72.
    Tibayrenc M. A hard lesson for Europeans: the Asean CDC. Trends Microbiol 2005; 13:266–8.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Michel Tibayrenc
    • 1
    • 2
  1. 1.IRD Representative Office French EmbassyBangkokThailand
  2. 2.Genetics and Evolution of Infectious DiseasesIRDMontpellier Cedex 5France

Personalised recommendations