Skip to main content

Transmission Models and Management of Lymphatic Filariasis Elimination

  • Chapter
Modelling Parasite Transmission and Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 673))

Abstract

The planning and evaluation of parasitic control programmes are complicated by the many interacting population dynamic and programmatic factors that determine infection trends under different control options. A key need is quantification about the status of the parasite system state at any one given timepoint and the dynamic change brought upon that state as an intervention program proceeds. Here, we focus on the control and elimination of the vector-borne disease, lymphatic filariasis, to show how mathematical models of parasite transmission can provide a quantitative framework for aiding the design of parasite elimination and monitoring programs by their ability to support (1) conducting rational analysis and definition of endpoints for different programmatic aims or objectives, including transmission endpoints for disease elimination, (2) undertaking strategic analysis to aid the optimal design of intervention programs to meet set endpoints under different endemic settings and (3) providing support for performing informed evaluations of ongoing programs, including aiding the formation of timely adaptive management strategies to correct for any observed deficiencies in program effectiveness. The results also highlight how the use of a model-based framework will be critical to addressing the impacts of ecological complexities, heterogeneities and uncertainties on effective parasite management and thereby guiding the development of strategies to resolve and overcome such real-world complexities. In particular, we underscore how this approach can provide a link between ecological science and policy by revealing novel tools and measures to appraise and enhance the biological controllability or eradicability of parasitic diseases. We conclude by emphasizing an urgent need to develop and apply flexible adaptive management frameworks informed by mathematical models that are based on learning and reducing uncertainty using monitoring data, apply phased or sequential decision-making to address extant uncertainty and focus on developing ecologically resilient management strategies, in ongoing efforts to control or eliminate filariasis and other parasitic diseases in resource-poor communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michael E, Malecela-Lazaro MN, Simonsen PE et al. Mathematical modelling and the control of lymphatic filariasis. Lancet Infect Dis 2004; 4:223–34.

    Article  PubMed  Google Scholar 

  2. Liang S, Seto EY, Remais JV et al. Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. PNAS 2007; 104:7110–5.

    Article  CAS  PubMed  Google Scholar 

  3. Spear RC, Hubbard A, Liang S et al. Disease transmission models for public health decision making: toward an approach for designing intervention strategies for Schistosomiasis japonica. Environ Health Perspect 2002; 110:907–15.

    Article  PubMed  Google Scholar 

  4. Michael E. The epidemiology of filariasis control. In: Klei TR, Rajan TV, eds. The Filaria. Boston: Kluwer Academic Publishers, 2002;60–74.

    Google Scholar 

  5. Michael E, Malecela-Lazaro MN, Kabali C et al. Mathematical models and lymphatic filariasis control: endpoints and optimal interventions. Trends Parasitol 2006; 22:226–33.

    Article  PubMed  Google Scholar 

  6. Michael E, Malecela-Lazaro MN, Kazura JW. Epidemiological modelling for monitoring and evaluation of lymphatic filariasis control. Adv Parasitol 2007; 65:191–237.

    Article  PubMed  Google Scholar 

  7. Chan MS, Srividya A, Norman RA et al. Epifil: a dynamic model of infection and disease in lymphatic filariasis. Am J Trop Med Hyg 1998; 59:606–14.

    CAS  PubMed  Google Scholar 

  8. Gambhir M, Michael E. Complex ecological dynamics and eradicability of the vector borne macroparasitic disease, lymphatic filariasis. PLoS One 2008; 3(8):e2874.

    Article  Google Scholar 

  9. Norman RA, Chan MS, Srividya A et al. EPIFIL: the development of an age-structured model for describing the transmission dynamics and control of lymphatic filariasis. Epidemiol Infect 2000; 124:529–41.

    Article  CAS  PubMed  Google Scholar 

  10. Plaisier AP, Subramanian S, Das PK et al. The LYMFASIM simulation program for modeling lymphatic filariasis and its control. Methods Inf Med 1998; 37:97–108.

    CAS  PubMed  Google Scholar 

  11. Michael E, Malecela MN, Zervos M et al. Global eradication of lymphatic filariasis: the value of chronic disease control in parasite elimination programmes. PLoS One 2008; 3(8):e2936.

    Article  Google Scholar 

  12. Subramanian S, Stolk WA, Ramaiah KD et al. The dynamics of Wuchereria bancrofti infection: a model-based analysis of longitudinal data from Pondicherry, India. Parasitology 2004; 128:467–82.

    Article  CAS  PubMed  Google Scholar 

  13. Stolk WA, Swaminathan S, van Oortmarssen GJ et al. Prospects for elimination of bancroftian filariasis by mass drug treatment in Pondicherry, India: a simulation study. J Infect Dis 2003; 188:1371–81.

    Article  CAS  PubMed  Google Scholar 

  14. Kendall WL. Using models to facilitate complex decisions. In: Shenk TM, Franklin A B, eds. Modeling in Natural Resource Management. Washington: Island Press, 2001;147–70.

    Google Scholar 

  15. Michael E, Malecela-Lazaro MN, Maegga BTA et al. Mathematical models and lymphatic filariasis control: monitoring and evaluating interventions. Trends Parasitol 2006; 22:529–35.

    Article  PubMed  Google Scholar 

  16. Anderson R, May R. Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press, 1992.

    Google Scholar 

  17. Pugliese A, Tonetto L. Thresholds for macroparasite infections. Math Biol 2004; 49:83–110.

    Google Scholar 

  18. Duerr HP, Dietz K, Eichner M. Determinants of the eradicability of filarial infections: a conceptual approach. Trends Parasitol 2005; 21:88–96.

    Article  PubMed  Google Scholar 

  19. Codeco CT, Luz PM, Coelho F et al. Vaccinating in disease-free regions: a vaccine model with application to yellow fever. J Roy Soc Interface 2007; 4:1119–25.

    Article  Google Scholar 

  20. Poole D, Raftery AE. Inference for deterministic simulation models: the Bayesian melding approach. J Amer Stat Assoc 2000; 95:1244–55.

    Article  Google Scholar 

  21. Radtke PJ, Burk TE, Bolstad PV. Bayesian melding of a forest ecosystem model with correlated inputs. Forest Sci 2002; 48:701–11.

    Google Scholar 

  22. Oreskes N. The role of quantitative models in science. In: Canham CD, Cole JJ, Luauenroth WK, eds. Models in Ecosystem Science Princeton: Princeton University Press, 2003; 13–31.

    Google Scholar 

  23. Pedersen EM, Stolk WA, Laney SJ et al. The role of monitoring mosquito infection in the Global Programme to Eliminate Lymphatic Filariasis. Trends Parasitol 2009; 25:319–27.

    Article  PubMed  Google Scholar 

  24. Williams SA, Laney SJ, Bierwert LA et al. Development and standardization of a rapid, PCR-based method for the detection of Wuchereria bancrofti in mosquitoes, for xenomonitoring the human prevalence of bancroftian filariasis. Ann Trop Med Parasitol 2002; 96:S41–6.

    Article  Google Scholar 

  25. Fischer P, Wibowo H, Pischke S et al. PCR-based detection and identification of the filarial parasite Brugia timori from Alor Island, Indonesia. Ann Trop Med Parasitol 2002; 96:809–21.

    Article  CAS  PubMed  Google Scholar 

  26. Rao RU, Atkinson LJ, Ramzy RM et al. A real-time PCR-based assay for detection of Wuchereria bancrofti DNA in blood and mosquitoes. Am J Trop Med Hyg 2006; 74:826–32.

    CAS  PubMed  Google Scholar 

  27. Medley GF. Predicting the unpredictable (Perspective). Science 2001; 294:1663–64.

    Article  CAS  PubMed  Google Scholar 

  28. Green LE, Medley GF. Mathematical modelling of the foot and mouth disease epidemic of 2001: strenghts and weaknesses. Res Vet Sci 2002; 73:201–05.

    Article  CAS  PubMed  Google Scholar 

  29. Taylor N. Review of the use of models in informing disease control policy development and adjustment. A report for DEFRA. 2003; Available from: http://www.defra.gov/uk/science/publications/2003/ useofmodelsindiseasecontrolpolicy.pdf.

    Google Scholar 

  30. Pfeiffer D. Science, epidemiological models and decision making. Vet J 2004; 167:123–24.

    Article  PubMed  Google Scholar 

  31. Kitching RP. Predictive models and FMD: the emporer’s ew clothes? Vet J 2004; 167:127–28.

    Article  CAS  PubMed  Google Scholar 

  32. Clark CW. Bioeconomic Modelling and Fisheries Management. London: Wiley-Interscience, 1985.

    Google Scholar 

  33. Anderson RM, May RM. Helminth infections of humans: mathematical models, population dynamics and control. Adv Parasitol 1985; 24:1–101.

    Article  CAS  PubMed  Google Scholar 

  34. Woolhouse ME. On the application of mathematical models of schistosome transmission dynamics. II. Control. Acta Trop 1992; 50:189–204.

    Article  CAS  Google Scholar 

  35. Winnen M, Plaisier AP, Alley ES et al. Can ivermectin mass treatments eliminate onchocerciasis in Africa? Bull World Health Organ 2002; 80:384–91.

    CAS  PubMed  Google Scholar 

  36. Plaisier AP, Stolk WA, van Oortmarssen GJ et al. Effectiveness of annual ivermectin treatment for Wuchereria bancrofti infection. Parasitol Today 2000; 16:298–302.

    Article  CAS  PubMed  Google Scholar 

  37. Maxwell CA, Mohammed K, Kisumku U et al. Can vector control play a useful supplementary role against bancroftian filariasis? Bull World Health Organ 1999; 77:138–43.

    CAS  PubMed  Google Scholar 

  38. Curtis CF, Malecela-Lazaro M, Reuben R et al. Use of floating layers of polystyrene beads to control populations of the filaria vector Culex quinquefasciatus. Ann Trop Med Parasitol 2002; 96:S97–104.

    Article  Google Scholar 

  39. Burkot T, Ichimori K. The PacELF programme: will mass drug administration be enough? Trends Parasitol 2002; 18:109–15.

    Article  PubMed  Google Scholar 

  40. Norton JP, Reckhow KH. Modelling and monitoring environmental outcomes in adaptive management. In: Jakeman AJ, Voinov AA, Rizzoli AE, Chen SH, eds. Environmental Modelling: Software and Decision Support. Amsterdam: Elsevier, 2008;181–204.

    Google Scholar 

  41. Scheffer M. Critical Transitions in Nature and Society. Princeton: Princeton University Press, 2009.

    Google Scholar 

  42. Bockarie MJ, Pedersen EM, White GB et al. Role of vector control in the global program to eliminate lymphatic filariasis. Ann Rev Entomol 2009; 54:469–87.

    Article  CAS  Google Scholar 

  43. Maddox DE, Polani K, Unnasch R. Evaluating management success: using ecological models to ask the right monitoring questions. In: Johnson NC, Malk AJ, Szaro RC, Sexton WT, eds. Ecological Stewardship A Common Reference for Ecosystem Management. Oxford: Elsevier Science Ltd, 1999;563–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Michael, E., Gambhir, M. (2010). Transmission Models and Management of Lymphatic Filariasis Elimination. In: Michael, E., Spear, R.C. (eds) Modelling Parasite Transmission and Control. Advances in Experimental Medicine and Biology, vol 673. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6064-1_11

Download citation

Publish with us

Policies and ethics