Advertisement

Progress in Modelling Malaria Transmission

  • David L. Smith
  • Nick Ruktanonchai
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 673)

Abstract

Transmission of human malaria is a complicated dynamic process that involves populations of humans, parasites, and vectors. The first mathematical models of malaria are now more than a century old, and they are still a useful conceptual synthetic description of transmission, but they fail in some important ways. To address some of those failures, malaria transmission models have now been extended to consider malaria immunity, superinfection, and heterogeneous biting, among other factors. These extensions of the basic theory often arise from field studies in a single place, but tests of the theory come comparing standard measures of malaria taken from many places across the transmission spectrum. Several good models now exist that describe these basic patterns across the spectrum from low to high endemicity. The future of malaria modeling will involve applying these models to make decisions about real systems and finding new ways to test the underlying causes of the patterns.

Keywords

Malaria Transmission Malaria Control Transmission Intensity Parasite Rate Clinical Malaria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ross R. On some peculiar pigmented cells found in two mosquitoes fed on malarial blood. BMJ 1897; 18:1786–1788.CrossRefGoogle Scholar
  2. 2.
    Ross R. Report on the prevention of malaria in mauritius. London: Waterlow and Sons Limited, 1908.Google Scholar
  3. 3.
    Waite H. Mosquitoes and malaria. A study of the relation between the number of mosquitoes in a locality and the malaria rate. Biometrika 1910; 7(4):421–436.Google Scholar
  4. 4.
    Ross R. The prevention of malaria. Second ed. London: John Murray, 1911.Google Scholar
  5. 5.
    Ross R. Some quantitative studies in epidemiology. Nature 1911; 87:466–467.CrossRefGoogle Scholar
  6. 6.
    Lotka AJ. Quantitative studies in epidemiology. Nature 1912; 88(2206):497–498.CrossRefGoogle Scholar
  7. 7.
    Lotka AJ. Contributions to the analysis of malaria epidemiology. I. General part. Amer J Hyg 1923; 3(Suppl 1):1–36.Google Scholar
  8. 8.
    Lotka AJ. Contributions to the analysis of malaria epidemiology. II. General part (continued). Comparison of two formulae given by Sir Ronald Ross. Amer J Hyg 1923; 3(Suppl 1):38–54.Google Scholar
  9. 9.
    Lotka AJ. Contributions to the analysis of malaria epidemiology. III. Numerical part. Amer J Hyg 1923; 3(Suppl 1):55–95.Google Scholar
  10. 10.
    Lotka AJ, Sharpe FR. Contributions to the analysis of malaria epidemiology. IV. Incubation lag. Amer J Hyg 1923; 3 (Suppl 1):96–112.Google Scholar
  11. 11.
    Lotka AJ. Contributions to the analysis of malaria epidemiology. V. Summary Amer J Hyg 1923; 3(Suppl 1):113–121.Google Scholar
  12. 12.
    Smith DL, McKenzie FE. Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J 2004; 3:13.CrossRefPubMedGoogle Scholar
  13. 13.
    McKendrick AG. The epidemiological significance of repeated infections and relapses. Indian J Med Res 1915; 3:266–270.Google Scholar
  14. 14.
    Walton GA. On the control of malaria in Freetown, Sierra Leone. I. Plasmodium falciparum and Anopheles gambiae in relation to malaria occurring in infants. Annals of Tropical Medicine and Parasitology 1947; 41:380–407.PubMedGoogle Scholar
  15. 15.
    Macdonald G. The analysis of infection rates in diseases in which superinfection occurs. Trop Dis Bull 1950; 47(10):907–915.PubMedGoogle Scholar
  16. 16.
    Aron JL, May RM. The population dynamics of malaria. In: Anderson RM, ed. Population Dynamics and Infectious Disease. London, UK: Chapman and Hall 1982; 139–179.Google Scholar
  17. 17.
    Fine PEM. Superinfection-a problem in formulating a problem. Bureau of Hygiene and Tropical Diseases 1975; 72:475–488.Google Scholar
  18. 18.
    Dietz K, Molineaux L, Thomas A. A malaria model tested in the african savannah. Bull World Health Organ 1974; 50(3-4):347–357.PubMedGoogle Scholar
  19. 19.
    Bailey NTJ. The biomathematics of malaria. Oxford: Oxford University Press, 1982.Google Scholar
  20. 20.
    Dietz K. Density-dependence in parasite transmission dynamics. Parasitol Today 1988; 4(4):91–97.CrossRefPubMedGoogle Scholar
  21. 21.
    Dietz K. Mathematical models for transmission and control of malaria. In: Wernsdorfer W, McGregor I, eds. Principles and Practice of Malaria. Edinburgh, UK: Churchill Livingstone 1988; 1091–1133.Google Scholar
  22. 22.
    Muirhead-Thomson RC. The distribution of anopheline mosquito bites among different age groups; a new factor in malaria epidemiology. Br Med J 1951; 1(4715):1114–1117.CrossRefPubMedGoogle Scholar
  23. 23.
    Port GR, Boreham PFL, Bryan JH. The relationship of host size to feeding by mosquitoes of the Anopheles gambiae giles complex (Diptera: Culicidae). Bull Entomological Res 1980; 70:133–144.CrossRefGoogle Scholar
  24. 24.
    Takken W, Knols BGJ. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annual Reviews of Entomology 1999; 44:131–157.CrossRefGoogle Scholar
  25. 25.
    Smith T, Charlwood JD, Takken W et al. Mapping the densities of malaria vectors within a single village. Acta Trop 1995; 59(1):1–18.CrossRefPubMedGoogle Scholar
  26. 26.
    Lindsay SW, Emerson PM, Charlwood JD. Reducing malaria by mosquito-proofing houses. Trends Parasitol 2002; 18(11):510–514.CrossRefPubMedGoogle Scholar
  27. 27.
    Lindsay SW, Snow RW. The trouble with eaves; house entry by vectors of malaria. Trans R Soc Trop Med Hyg 1988; 82(4):645–646.CrossRefPubMedGoogle Scholar
  28. 28.
    Lacroix R, Mukabana WR, Gouagna LC et al. Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biol 2005; 3(9):e298.CrossRefGoogle Scholar
  29. 29.
    Smith D L, McKenzie FE, Snow RW et al. Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol 2007; 5(3):e42.CrossRefGoogle Scholar
  30. 30.
    Dietz K. Models for vector-borne parasitic diseases. Lecture Notes in Biomathematics 1980; 39:264–277.Google Scholar
  31. 31.
    Dye C, Hasibeder G. Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others. Trans R Soc Trop Med Hyg 1986; 80(1):69–77.CrossRefPubMedGoogle Scholar
  32. 32.
    Kingsolver JG. Mosquito host choice and the epidemiology of malaria. The American Naturalist 1987; 130:811–827.CrossRefGoogle Scholar
  33. 33.
    Smith DL, Dushoff J, McKenzie FE. The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol 2004; 2(11):e368.CrossRefGoogle Scholar
  34. 34.
    Le Menach A, McKenzie FE, Flahault A et al. The unexpected importance of mosquito oviposition behaviour for malaria: nonproductive larval habitats can be sources for malaria transmission. Malar J 2005; 4(1):23.CrossRefPubMedGoogle Scholar
  35. 35.
    Ross R. An application to the theory of probabilities to the study of a priori pathometry—part I. Proc Roy Soc Lond Part 1 A 1916; 92:204–230.CrossRefGoogle Scholar
  36. 36.
    Box GEP, Draper NR. Empirical Model-Building and Response Surfaces: Wiley, 1987.Google Scholar
  37. 37.
    Molineaux L, Dietz K, Thomas A. Further epidemiological evaluation of a malaria model. Bull World Health Organ 1978; 56(4):565–571.PubMedGoogle Scholar
  38. 38.
    McKenzie FE. Why model malaria? Parasitol Today 2000; 16(12):511–516.CrossRefPubMedGoogle Scholar
  39. 39.
    Levins R. The strategy of model building in population biology. American Scientist 1966; 54:421–431.Google Scholar
  40. 40.
    Hay SI, Smith DL, Snow RW. Measuring malaria endemicity from intense to interrupted transmission. Lancet Infect Dis 2008; 8(6):369–378.CrossRefPubMedGoogle Scholar
  41. 41.
    Smith DL, Guerra CA, Snow RW et al. Standardizing estimates of the Plasmodium falciparum parasite rate. Malar J 2007; 6:131.CrossRefPubMedGoogle Scholar
  42. 42.
    Corran P, Coleman P, Riley E et al. Serology: a robust indicator of malaria transmission intensity? Trends Parasitol 2007; 23(12):575–582.CrossRefPubMedGoogle Scholar
  43. 43.
    Macdonald G. Epidemiological basis of malaria control. Bull World Health Organ. 1956; 15(3-5):613–626.PubMedGoogle Scholar
  44. 44.
    Snow RW, Marsh K. The consequences of reducing transmission of plasmodium falciparum in Africa. Adv Parasitol 2002; 52:235–264.CrossRefPubMedGoogle Scholar
  45. 45.
    Smith DL, Dushoff J, Snow RW et al. The entomological inoculation rate and Plasmodium falciparum infection in african children. Nature 2005; 438(7067):492–495.CrossRefPubMedGoogle Scholar
  46. 46.
    Woolhouse ME, Dye C, Etard JF et al. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci USA 1997; 94(1):338–342.CrossRefPubMedGoogle Scholar
  47. 47.
    Kirby MJ, Green C, Milligan PM et al. Risk factors for house-entry by malaria vectors in a rural town and satellite villages in the gambia. Malar J 2008; 7:2.CrossRefPubMedGoogle Scholar
  48. 48.
    Lindsay SW, Jawara M, Paine K et al. Changes in house design reduce exposure to malaria mosquitoes. Trop Med Int Health 2003; 8(6):512–517.CrossRefPubMedGoogle Scholar
  49. 49.
    Le Menach A, Takala S, McKenzie FE et al. An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets. Malar J 2007; 6:10.CrossRefPubMedGoogle Scholar
  50. 50.
    Hasibeder G, Dye C. Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment. Theor Popul Biol 1988; 33(1):31–53.CrossRefPubMedGoogle Scholar
  51. 51.
    Struik SS, Riley EM. Does malaria suffer from lack of memory? Immunol Rev 2004; 201:268–290.CrossRefPubMedGoogle Scholar
  52. 52.
    Snow RW, Marsh K. The consequences of reducing transmission of Plasmodium falciparum in africa. Adv Parasitol 2002; 52:235–264.CrossRefPubMedGoogle Scholar
  53. 53.
    Carter R, Chen DH. Malaria transmission blocked by immunisation with gametes of the malaria parasite. Nature 1976; 263(5572):57–60.CrossRefPubMedGoogle Scholar
  54. 54.
    Githeko AK, Brandling-Bennett AD, Beier M et al. The reservoir of it Plasmodium falciparum malaria in a holoendemic area of western Kenya. Trans R Soc Trop Med Hyg 1992; 86:355–358.CrossRefPubMedGoogle Scholar
  55. 55.
    Aron JL. Mathematical modeling of immunity to malaria. Mathematical Biosciences 1988; 90:385–396.CrossRefGoogle Scholar
  56. 56.
    Aron JL. Dynamics of acquired immunity boosted by exposure to infection. Mathematical Biosciences 1983; 64:249–259.CrossRefGoogle Scholar
  57. 57.
    Aron JL. Acquired immunity dependent upon exposure in an SIRS epidemic model. Mathematical Biosciences 1988; 88:37–47.CrossRefGoogle Scholar
  58. 58.
    Smith T, Hii JL, Genton B et al. Associations of peak shifts in age-prevalence for human malarias with bednet coverage. Trans R Soc Trop Med Hyg 2001; 95(1):1–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Gupta S, Snow RW, Donnelly CA et al. Immunity to noncerebral severe malaria is acquired after one or two infections. Nat Med 1999; 5(3):340–343.CrossRefPubMedGoogle Scholar
  60. 60.
    Koella JC, Antia R. Epidemiological models for the spread of antimalarial resistance. Malar J 2003; 2:3.CrossRefPubMedGoogle Scholar
  61. 61.
    Klein EY, Smith DL, Boni MF et al. Clinically immune hosts as a refuge for drug-sensitive malaria parasites. Malar J 2008; 7:67.CrossRefPubMedGoogle Scholar
  62. 62.
    Smith TA. Estimation of heterogeneity in malaria transmission by stochastic modelling of apparent deviations from mass action kinetics. Malar J 2008; 7:12.CrossRefPubMedGoogle Scholar
  63. 63.
    Tatem AJ, Rogers DJ, Hay SI. Estimating the malaria risk of African mosquito movement by air travel. Malar J 2006; 5:57.CrossRefPubMedGoogle Scholar
  64. 64.
    Tatem AJ, Hay SI, Rogers DJ. Global traffic and disease vector dispersal. Proc Natl Acad Sci USA 2006; 103(16):6242–6247.CrossRefPubMedGoogle Scholar
  65. 65.
    Killeen GF. Following in Soper’s footsteps: northeast Brazil 63 years after eradication of Anopheles Gambiae. Lancet Infect Dis 2003; 3(10):663–666.CrossRefPubMedGoogle Scholar
  66. 66.
    Packard RM, Gadehla P. A land filled with mosquitoes: Fred L. Soper, the Rockefeller Foundation and the Anopheles gambiae invasion of Brazil. Med Anthropol 1997; 17(3):215–238.CrossRefPubMedGoogle Scholar
  67. 67.
    Packard RM, Gadelha P. A land filled with mosquitoes: Fred L. Soper, the Rockefeller Foundation and the Anopheles gambiae invasion of Brazil. Parassitologia 1994; 36(1-2):197–213.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • David L. Smith
    • 1
  • Nick Ruktanonchai
    • 1
  1. 1.Department of Zoology and Emerging Pathogens InstituteUniversity of FloridaGainesvilleUSA

Personalised recommendations