Skip to main content

Anesthesia for Cardiac Surgery in Neonates

  • Chapter
  • First Online:
  • 2134 Accesses

Abstract

Cardiac surgery in the neonate usually is indicated for treatment of congenital malformations of the heart or cardiovascular system. Extremely rare is the need for surgical intervention for pathologies such as endocarditis, cardiac tumors, rhythm disturbances, or pericardial disease. Thus, the focus of this chapter is on anesthesia for cardiac surgery in the neonate with congenital heart disease (CHD). This chapter begins with a brief overview of the cardiovascular physiology of the fetus and neonate, followed by a discussion of CHD that includes the epidemiology, clinical features, and diagnosis in the neonate. Selected anomalies of particular relevance in this age group are reviewed, with emphasis on anatomic features, pathophysiology of the defect, perioperative management, and specific considerations during anesthetic care. This is followed with an in-depth discussion on the important aspects of anesthetic practice in the neonate with CHD undergoing cardiac surgery. Finally, several specific perioperative problems and concerns in the neonate are highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rudolph AM. The changes in the circulation after birth. Their importance in congenital heart disease. Circulation. 1970;41:343–59.

    CAS  PubMed  Google Scholar 

  2. Friedman AH, Fahey JT. The transition from fetal to neonatal circulation: normal responses and implications for infants with heart disease. Semin Perinatol. 1993;17:106–21.

    CAS  PubMed  Google Scholar 

  3. Rudolph AM. Fetal and neonatal pulmonary circulation. Annu Rev Physiol. 1979;41:383–95.

    CAS  PubMed  Google Scholar 

  4. Friedman WF. The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis. 1972;15:87–111.

    CAS  PubMed  Google Scholar 

  5. Nakanishi T, Seguchi M, Takao A. Development of the myocardial contractile system. Experientia. 1988;44:936–44.

    CAS  PubMed  Google Scholar 

  6. Chin TK, Friedman WF, Klitzner TS. Developmental changes in cardiac myocyte calcium regulation. Circ Res. 1990;67:574–9.

    CAS  PubMed  Google Scholar 

  7. Prakash YS, Seckin I, Hunter LW, Sieck GC. Mechanisms underlying greater sensitivity of neonatal cardiac muscle to volatile anesthetics. Anesthesiology. 2002;96:893–906.

    CAS  PubMed  Google Scholar 

  8. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–e245.

    PubMed  Google Scholar 

  9. van der Linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58:2241–7.

    PubMed  Google Scholar 

  10. Zhao Q, Ma X, Jia B, Huang G. Prevalence of congenital heart disease at live birth: an accurate assessment by echocardiographic screening. Acta Paediatr. 2013;102:397–402.

    PubMed  Google Scholar 

  11. Bernier PL, Stefanescu A, Samoukovic G, Tchervenkov CI. The challenge of congenital heart disease worldwide: epidemiologic and demographic facts. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2010;13:26–34.

    PubMed  Google Scholar 

  12. Tanner K, Sabrine N, Wren C. Cardiovascular malformations among preterm infants. Pediatrics. 2005;116:e833–838.

    PubMed  Google Scholar 

  13. Pierpont ME, Basson CT, Benson DW, et al. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American heart association congenital cardiac defects committee, council on cardiovascular disease in the young: endorsed by the American academy of pediatrics. Circulation. 2007;115:3015–38.

    PubMed  Google Scholar 

  14. Zaidi S, Choi M, Wakimoto H, et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498:220–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Fahed AC, Nemer GM. Genetic causes of syndromic and non-syndromic congenital heart disease. In: Cooper DN, Chen JM, editors. Mutations in human genetic disease. Open Access; 2012.

    Google Scholar 

  16. Wren C, Irving CA, Griffiths JA, et al. Mortality in infants with cardiovascular malformations. Eur J Pediatr. 2012;171:281–7.

    PubMed  Google Scholar 

  17. Moller JH. Prevalence and incidence of cardiac malformations. Perspectives in pediatric cardiology: surgery for congenital heart disease 1984–1995. Armonk, NY: Futura Publishing Company; 1998. p. 6:19–6:26.

    Google Scholar 

  18. Silberbach M, Hannon D. Presentation of congenital heart disease in the neonate and young infant. Pediatr Rev. 2007;28:123–31.

    PubMed  Google Scholar 

  19. Yun SW. Congenital heart disease in the newborn requiring early intervention. Korean J Pediatr. 2011;54:183–91.

    PubMed Central  PubMed  Google Scholar 

  20. Lee JY. Clinical presentations of critical cardiac defects in the newborn: decision making and initial management. Korean J Pediatr. 2010;53:669–79.

    PubMed Central  PubMed  Google Scholar 

  21. Sauvage LR, Mansfield PB, Stamm SJ. Physiologic classification of congenital heart disease. AORN J. 1973;18:61–83.

    CAS  PubMed  Google Scholar 

  22. Thiene G, Frescura C. Anatomical and pathophysiological classification of congenital heart disease. Cardiovasc Pathol. 2010;19:259–74.

    PubMed  Google Scholar 

  23. Rowe RD, Freedom RM, Mehrizi A, Bloom KR. The neonate with congenital heart disease. Major Probl Clin Pediatr. 1981;5:137–65.

    Google Scholar 

  24. Knowles R, Griebsch I, Dezateux C, Brown J, Bull C, Wren C. Newborn screening for congenital heart defects: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2005;9:1–152, iii–iv.

    Google Scholar 

  25. Gertler R, Miller-Hance WC. Essential cardiology. In: Cote CJ, Lerman J, Anderson BJ, editors. A practice of anesthesia for infants and children. Philadelphia: W. B. Saunders; 2013. p. 291–326.

    Google Scholar 

  26. Welke KF, Komanapalli C, Shen I, Ungerleider RM. Advances in congenital heart surgery. Curr Opin Pediatr. 2005;17:574–8.

    PubMed  Google Scholar 

  27. Schneider DJ, Moore JW. Congenital heart disease for the adult cardiologist: patent ductus arteriosus. Circulation. 2006;114:1873–82.

    PubMed  Google Scholar 

  28. El-Khuffash AF, Jain A, McNamara PJ. Ligation of the patent ductus arteriosus in preterm infants: understanding the physiology. J Pediatr. 2013;162:1100–6.

    PubMed  Google Scholar 

  29. Reese J. Patent ductus arteriosus: mechanisms and management. Semin Perinatol. 2012;36:89–91.

    PubMed  Google Scholar 

  30. Johnston PG, Gillam-Krakauer M, Fuller MP, Reese J. Evidence-based use of indomethacin and ibuprofen in the neonatal intensive care unit. Clin Perinatol. 2012;39:111–36.

    PubMed Central  PubMed  Google Scholar 

  31. Burke RP, Wernovsky G, van der Velde M, Hansen D, Castaneda AR. Video-assisted thoracoscopic surgery for congenital heart disease. J Thorac Cardiovasc Surg. 1995;109:499–507 (discussion 508).

    CAS  PubMed  Google Scholar 

  32. Laborde F, Folliguet T, Da Cruz E, Batisse A, Carbognani D, Dibie A. Video surgical technique for interruption of patent ductus arteriosus in children and neonates. Pediatr Pulmonol Suppl. 1997;16:177–9.

    CAS  PubMed  Google Scholar 

  33. Wolf AR. Ductal ligation in the very low-birth weight infant: simple anesthesia or extreme art? Paediatr Anaesth. 2012;22:558–63.

    PubMed  Google Scholar 

  34. Harris LL, Krishnamurthy R, Browne LP, Morales DL, Friedman EM. Left main bronchus obstruction after patent ductus arteriosus ligation: an unusual complication. Int J Pediatr Otorhinolaryngol. 2012;76:1855–6.

    CAS  PubMed  Google Scholar 

  35. Rukholm G, Farrokhyar F, Reid D. Vocal cord paralysis post patent ductus arteriosus ligation surgery: risks and co-morbidities. Int J Pediatr Otorhinolaryngol. 2012;76:1637–41.

    PubMed  Google Scholar 

  36. Hsu KH, Chiang MC, Lien R, et al. Diaphragmatic paralysis among very low birth weight infants following ligation for patent ductus arteriosus. Eur J Pediatr. 2012;171:1639–44.

    PubMed  Google Scholar 

  37. El-Khuffash AF, Jain A, Dragulescu A, McNamara PJ, Mertens L. Acute changes in myocardial systolic function in preterm infants undergoing patent ductus arteriosus ligation: a tissue Doppler and myocardial deformation study. J Am Soc Echocardiogr. 2012;25:1058–67.

    PubMed  Google Scholar 

  38. Shone JD, Sellers RD, Anderson RC, Adams PJ, Lillihei CW, Edwards JE. The developmental complex of "parachute mitral valve," supravalvular ring of left atrium, subaortic stenosis, and coarctation of aorta. Am J Cardiol. 1963;11:714–25.

    CAS  PubMed  Google Scholar 

  39. Fesseha AK, Eidem BW, Dibardino DJ, et al. Neonates with aortic coarctation and cardiogenic shock: presentation and outcomes. Ann Thorac Surg. 2005;79:1650–5.

    PubMed  Google Scholar 

  40. Elgamal MA, McKenzie ED, Fraser CDJ. Aortic arch advancement: the optimal one-stage approach for surgical management of neonatal coarctation with arch hypoplasia. Ann Thorac Surg. 2002;73:1267–72. discussion 1272–1273.

    PubMed  Google Scholar 

  41. Wright GE, Nowak CA, Goldberg CS, Ohye RG, Bove EL, Rocchini AP. Extended resection and end-to-end anastomosis for aortic coarctation in infants: results of a tailored surgical approach. Ann Thorac Surg. 2005;80:1453–9.

    PubMed  Google Scholar 

  42. Rao PS, Singh GK, Balfour IC, Jureidini SB, Fiore AC. Balloon angioplasty of long-segment aortic coarctation in the neonate. J Invasive Cardiol. 1999;11:734–8.

    CAS  PubMed  Google Scholar 

  43. Keen G. Spinal cord damage and operations for coarctation of the aorta: aetiology, practice, and prospects. Thorax. 1987;42:11–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Ungerleider RM, Pasquali SK, Welke KF, Wallace AS, Ootaki Y, Quartermain MD, Williams DA, Jacobs JP. Contemporary patterns of surgery and outcomes for aortic coarctation: an analysis of the society of thoracic surgeons congenital heart surgery database. J Thorac Cardiovasc Surg. 2013;145:150–7 (discussion 157–158).

    PubMed  Google Scholar 

  45. Rosenthal E. Coarctation of the aorta from fetus to adult: curable condition or life long disease process? Heart. 2005;91:1495–502.

    PubMed Central  PubMed  Google Scholar 

  46. Polson JW, McCallion N, Waki H, et al. Evidence for cardiovascular autonomic dysfunction in neonates with coarctation of the aorta. Circulation. 2006;113:2844–50.

    PubMed  Google Scholar 

  47. Bisoi AK, Sharma P, Chauhan S, et al. Primary arterial switch operation in children presenting late with d-transposition of great arteries and intact ventricular septum. When is it too late for a primary arterial switch operation? Eur J Cardiothorac Surg. 2010;38:707–13.

    PubMed  Google Scholar 

  48. Van Arsdell GS, Maharaj GS, Tom J, et al. What is the optimal age for repair of tetralogy of Fallot? Circulation. 2000;102:III123–129.

    PubMed  Google Scholar 

  49. Mulder TJ, Pyles LA, Stolfi A, Pickoff AS, Moller JH. A multicenter analysis of the choice of initial surgical procedure in tetralogy of Fallot. Pediatr Cardiol. 2002;23:580–6.

    CAS  PubMed  Google Scholar 

  50. Kanter KR, Kogon BE, Kirshbom PM, Carlock PR. Symptomatic neonatal tetralogy of Fallot: repair or shunt? Ann Thorac Surg. 2010;89:858–63.

    PubMed  Google Scholar 

  51. Morales DL, Zafar F, Fraser CDJ. Tetralogy of Fallot repair: the right ventricle infundibulum sparing (RVIS) strategy. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2009;54–58.

    Google Scholar 

  52. Padalino MA, Vida VL, Stellin G. Transatrial-transpulmonary repair of tetralogy of Fallot. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2009:48–53.

    Google Scholar 

  53. Kalfa DM, Serraf AE, Ly M, Le Bret E, Roussin R, Belli E. Tetralogy of Fallot with an abnormal coronary artery: surgical options and prognostic factors. Eur J Cardiothorac Surg. 2012;42:e34–39.

    PubMed  Google Scholar 

  54. Rajagopal SK, Thiagarajan RR. Perioperative care of children with tetralogy of fallot. Curr Treat Options Cardiovasc Med. 2011;13:464–74.

    PubMed  Google Scholar 

  55. Shekerdemian LS, Schulze-Neick I, Redington AN, Bush A, Penny DJ. Negative pressure ventilation as haemodynamic rescue following surgery for congenital heart disease. Intensive Care Med. 2000;26:93–6.

    CAS  PubMed  Google Scholar 

  56. Bronicki RA, Herrera M, Mink R, Domico M, Tucker D, Chang AC, Anas NG. Hemodynamics and cerebral oxygenation following repair of tetralogy of Fallot: the effects of converting from positive pressure ventilation to spontaneous breathing. Congenit Heart Dis. 2010;5:416–21.

    PubMed  Google Scholar 

  57. Makhoul M, Oster M, Fischbach P, Das S, Deshpande S. Junctional ectopic tachycardia after congenital heart surgery in the current surgical era. Pediatr Cardiol. 2013;34:370–4.

    PubMed  Google Scholar 

  58. Bar-Cohen Y, Silka MJ. Management of postoperative arrhythmias in pediatric patients. Curr Treat Options Cardiovasc Med. 2012;14:443–54.

    PubMed  Google Scholar 

  59. Mahmoud AB, Tantawy AE, Kouatli AA, Baslaim GM. Propranolol: a new indication for an old drug in preventing postoperative junctional ectopic tachycardia after surgical repair of tetralogy of Fallot. Interact Cardiovasc Thorac Surg. 2008;7:184–7.

    PubMed  Google Scholar 

  60. Collett RW, Edwards JE. Persistent truncus arteriousus: a classification according to antomic types. Surg Clin N Am. 1949;29:1245–70.

    CAS  PubMed  Google Scholar 

  61. Odegard KC, DiNardo JA, Kussman BD, et al. The frequency of anesthesia-related cardiac arrests in patients with congenital heart disease undergoing cardiac surgery. Anesth Analg. 2007;105:335–43.

    PubMed  Google Scholar 

  62. Oepkes D, Moon-Grady AJ, Wilkins-Haug L, Tworetzky W, Arzt W, Devlieger R. 2010 Report from the ISPD Special Interest Group fetal therapy: fetal cardiac interventions. Prenat Diagn. 2011;31:249–51.

    CAS  PubMed  Google Scholar 

  63. Hickey EJ, Caldarone CA, McCrindle BW. Left ventricular hypoplasia: a spectrum of disease involving the left ventricular outflow tract, aortic valve, and aorta. J Am Coll Cardiol. 2012;59:S43–54.

    PubMed  Google Scholar 

  64. Vlahos AP, Lock JE, McElhinney DB, van der Velde ME. Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: outcome after neonatal transcatheter atrial septostomy. Circulation. 2004;109:2326–30.

    PubMed  Google Scholar 

  65. Villa CR, Marino BS, Jacobs JP, Cooper DS. Intensive care and perioperative management of neonates with functionally univentricular hearts. World J Pediatr Congenit Heart Surg. 2012;3:359–63.

    PubMed  Google Scholar 

  66. Hansen DD, Hickey PR. Anesthesia for hypoplastic left heart syndrome: use of high-dose fentanyl in 30 neonates. Anesth Analg. 1986;65:127–32.

    CAS  PubMed  Google Scholar 

  67. Tabbutt S, Ramamoorthy C, Montenegro LM, et al. Impact of inspired gas mixtures on preoperative infants with hypoplastic left heart syndrome during controlled ventilation. Circulation. 2001;104:I159–164.

    CAS  PubMed  Google Scholar 

  68. Stayer S, Gouvion J, Evey L, Andropoulos D. Subambient gas delivery. Anesth Analg. 2002;94:1674–5.

    PubMed  Google Scholar 

  69. Ramamoorthy C, Tabbutt S, Kurth CD, et al. Effects of inspired hypoxic and hypercapnic gas mixtures on cerebral oxygen saturation in neonates with univentricular heart defects. Anesthesiology. 2002;96:283–8.

    PubMed  Google Scholar 

  70. Feinstein JA, Benson DW, Dubin AM, et al. Hypoplastic left heart syndrome: current considerations and expectations. J Am Coll Cardiol. 2012;59:S1–42.

    PubMed  Google Scholar 

  71. Bailey LL, Nehlsen-Cannarella SL, Doroshow RW, et al. Cardiac allotransplantation in newborns as therapy for hypoplastic left heart syndrome. N Engl J Med. 1986;315:949–51.

    CAS  PubMed  Google Scholar 

  72. Galantowicz M, Cheatham JP, Phillips A, et al. Hybrid approach for hypoplastic left heart syndrome: intermediate results after the learning curve. Ann Thorac Surg. 2008;85:2063–70 (discussion 2070–2071).

    PubMed  Google Scholar 

  73. Sano S, Ishino K, Kawada M, Honjo O. Right ventricle-pulmonary artery shunt in first-stage palliation of hypoplastic left heart syndrome. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2004;7:22–31.

    PubMed  Google Scholar 

  74. Hornik CP, He X, Jacobs JP, et al. Complications after the Norwood operation: an analysis of the society of thoracic surgeons congenital heart surgery database. Ann Thorac Surg. 2011;92:1734–40.

    PubMed Central  PubMed  Google Scholar 

  75. Tweddell JS, Hoffman GM, Fedderly RT, et al. Phenoxybenzamine improves systemic oxygen delivery after the Norwood procedure. Ann Thorac Surg. 1999;67:161–7 (discussion 167–168).

    CAS  PubMed  Google Scholar 

  76. Hoffman GM, Tweddell JS, Ghanayem NS, et al. Alteration of the critical arteriovenous oxygen saturation relationship by sustained afterload reduction after the Norwood procedure. J Thorac Cardiovasc Surg. 2004;127:738–45.

    PubMed  Google Scholar 

  77. Ohye RG, Sleeper LA, Mahony L, et al. Comparison of shunt types in the Norwood procedure for single-ventricle lesions. N Engl J Med. 2010;362:1980–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Ghanayem NS, Allen KR, Tabbutt S, et al. Interstage mortality after the Norwood procedure: results of the multicenter single ventricle reconstruction trial. J Thorac Cardiovasc Surg. 2012;144:896–906.

    PubMed Central  PubMed  Google Scholar 

  79. Tweddell JS, Hoffman GM, Mussatto KA, et al. Improved survival of patients undergoing palliation of hypoplastic left heart syndrome: lessons learned from 115 consecutive patients. Circulation. 2002;106:I82–9.

    PubMed  Google Scholar 

  80. Tweddell JS, Ghanayem NS, Mussatto KA, et al. Mixed venous oxygen saturation monitoring after stage 1 palliation for hypoplastic left heart syndrome. Ann Thorac Surg. 2007;84:1301–10 (discussion 1310–1311).

    PubMed  Google Scholar 

  81. Wernovsky G, Kuijpers M, Van Rossem MC, et al. Postoperative course in the cardiac intensive care unit following the first stage of Norwood reconstruction. Cardiol Young. 2007;17:652–65.

    PubMed  Google Scholar 

  82. Shen I, Ungerleider RM. Routine use of mechanical ventricular assist following the Norwood procedure. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2004;7:16–21.

    PubMed  Google Scholar 

  83. Naguib AN, Winch P, Schwartz L, et al. Anesthetic management of the hybrid stage 1 procedure for hypoplastic left heart syndrome (HLHS). Paediatr Anaesth. 2010;20:38–46.

    PubMed  Google Scholar 

  84. Ferencz C, Rubin JD, McCarter RJ, et al. Congenital heart disease: prevalence at livebirth. The Baltimore-Washington Infant Study. Am J Epidemiol. 1985;121:31–6.

    CAS  PubMed  Google Scholar 

  85. Gittenberger-de Groot AC, Sauer U, Bindl L, Babic R, Essed CE, Buhlmeyer K. Competition of coronary arteries and ventriculo-coronary arterial communications in pulmonary atresia with intact ventricular septum. Int J Cardiol. 1988;18:243–58.

    CAS  PubMed  Google Scholar 

  86. Freedom RM, Anderson RH, Perrin D. The significance of ventriculo-coronary arterial connections in the setting of pulmonary atresia with an intact ventricular septum. Cardiol Young. 2005;15:447–68.

    PubMed  Google Scholar 

  87. Justo RN, Nykanen DG, Williams WG, Freedom RM, Benson LN. Transcatheter perforation of the right ventricular outflow tract as initial therapy for pulmonary valve atresia and intact ventricular septum in the newborn. Cathet Cardiovasc Diagn. 1997;40:408–13.

    CAS  PubMed  Google Scholar 

  88. Shaddy RE, Sturtevant JE, Judd VE, McGough EC. Right ventricular growth after transventricular pulmonary valvotomy and central aortopulmonary shunt for pulmonary atresia and intact ventricular septum. Circulation. 1990;82:IV157–63.

    CAS  PubMed  Google Scholar 

  89. Neufeld HN, Lester RG, Adams PJ, Anderson RC, Lillehei CW, Edwards JE. Aorticopulmonary septal defect. Am J Cardiol. 1962;9:12–25.

    CAS  PubMed  Google Scholar 

  90. Ho SY, Gerlis LM, Anderson C, Devine WA, Smith A. The morphology of aortopulmonary windows with regard to their classification and morphogenesis. Cardiol Young. 1994;4:146–55.

    Google Scholar 

  91. Tulloh RM, Rigby ML. Transcatheter umbrella closure of aorto-pulmonary window. Heart. 1997;77:479–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Ramamoorthy C, Haberkern CM, Bhananker SM, et al. Anesthesia-related cardiac arrest in children with heart disease: data from the pediatric perioperative cardiac arrest (POCA) registry. Anesth Analg. 2010;110:1376–82.

    CAS  PubMed  Google Scholar 

  93. Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures: a report by the American Society of Anesthesiologist Task Force on Preoperative Fasting. Anesthesiology. 1999;90:896–905.

    Google Scholar 

  94. Cavell B. Gastric emptying in infants with congenital heart disease. Acta Paediatr Scand. 1981;70:517–20.

    CAS  PubMed  Google Scholar 

  95. DeBock TL, Davis PJ, Tome J, Petrilli R, Siewers RD, Motoyama EK. Effect of premedication on arterial oxygen saturation in children with congenital heart disease. J Cardiothorac Anesth. 1990;4:425–9.

    CAS  PubMed  Google Scholar 

  96. Barker SJ, Tremper KK. Pulse oximetry: applications and limitations. Int Anesthesiol Clin. 1987;25:155–75.

    CAS  PubMed  Google Scholar 

  97. Tremper KK, Barker SJ. Pulse oximetry. Anesthesiology. 1989;70:98–108.

    CAS  PubMed  Google Scholar 

  98. Burrows FA. Physiologic dead space, venous admixture, and the arterial to end-tidal carbon dioxide difference in infants and children undergoing cardiac surgery. Anesthesiology. 1989;70:219–25.

    CAS  PubMed  Google Scholar 

  99. Lazzell VA, Burrows FA. Stability of the intraoperative arterial to end-tidal carbon dioxide partial pressure difference in children with congenital heart disease. Can J Anaesth. 1991;38:859–65.

    CAS  PubMed  Google Scholar 

  100. Tiffany KF, Burke BL, Collins-Odoms C, Oelberg DG. Current practice regarding the enteral feeding of high-risk newborns with umbilical catheters in situ. Pediatrics. 2003;112:20–3.

    PubMed  Google Scholar 

  101. Schwemmer U, Arzet HA, Trautner H, Rauch S, Roewer N, Greim CA. Ultrasound-guided arterial cannulation in infants improves success rate. Eur J Anaesthesiol. 2006;23:476–80.

    CAS  PubMed  Google Scholar 

  102. Detaille T, Pirotte T, Veyckemans F. Vascular access in the neonate. Best Pract Res Clin Anaesthesiol. 2010;24:403–18.

    PubMed  Google Scholar 

  103. Sulemanji DS, Donmez A, Akpek EA, Alic Y. Vascular catheterization is difficult in infants with Down syndrome. Acta Anaesthesiol Scand. 2009;53:98–100.

    CAS  PubMed  Google Scholar 

  104. Kahler AC, Mirza F. Alternative arterial catheterization site using the ulnar artery in critically ill pediatric patients. Pediatr Crit Care Med. 2002;3:370–4.

    PubMed  Google Scholar 

  105. Schindler E, Kowald B, Suess H, Niehaus-Borquez B, Tausch B, Brecher A. Catheterization of the radial or brachial artery in neonates and infants. Paediatr Anaesth. 2005;15:677–82.

    PubMed  Google Scholar 

  106. Prian GW. Temporal artery catheterization for arterial access in the high risk newborn. Surgery. 1977;82:734–7.

    CAS  PubMed  Google Scholar 

  107. Prian GW. Complications and sequelae of temporal artery catheterization in the high-risk newborn. J Pediatr Surg. 1977;12:829–35.

    CAS  PubMed  Google Scholar 

  108. Andropoulos DB, Bent ST, Skjonsby B, Stayer SA. The optimal length of insertion of central venous catheters for pediatric patients. Anesth Analg. 2001;93:883–6.

    CAS  PubMed  Google Scholar 

  109. Lamperti M, Bodenham AR, Pittiruti M, et al. International evidence-based recommendations on ultrasound-guided vascular access. Intensive Care Med. 2012;38:1105–17.

    PubMed  Google Scholar 

  110. Verghese ST, McGill WA, Patel RI, Sell JE, Midgley FM, Ruttimann UE. Ultrasound-guided internal jugular venous cannulation in infants: a prospective comparison with the traditional palpation method. Anesthesiology. 1999;91:71–7.

    CAS  PubMed  Google Scholar 

  111. Hosokawa K, Shime N, Kato Y, Hashimoto S. A randomized trial of ultrasound image-based skin surface marking versus real-time ultrasound-guided internal jugular vein catheterization in infants. Anesthesiology. 2007;107:720–4.

    PubMed  Google Scholar 

  112. Reyes JA, Habash ML, Taylor RP. Femoral central venous catheters are not associated with higher rates of infection in the pediatric critical care population. Am J Infect Control. 2012;40:43–7.

    PubMed  Google Scholar 

  113. Mitto P, Barankay A, Spath P, Kunkel R, Richter JA. Central venous catheterization in infants and children with congenital heart diseases: experiences with 500 consecutive catheter placements. Pediatr Cardiol. 1992;13:14–9.

    CAS  PubMed  Google Scholar 

  114. Malik M, et al. A comparison of external and internal jugular venous pressures to monitor pulmonary artery pressure after superior cavopulmonary anastomosis. Interact Cardiovasc Thorac Surg. 2011;13:566–8.

    PubMed  Google Scholar 

  115. Andropoulos DB, Stayer SA, Bent ST, et al. A controlled study of transesophageal echocardiography to guide central venous catheter placement in congenital heart surgery patients. Anesth Analg. 1999;89:65–70.

    CAS  PubMed  Google Scholar 

  116. Stevenson JG, Sorensen GK, Gartman DM, Hall DG, Rittenhouse EA. Transesophageal echocardiography during repair of congenital cardiac defects: identification of residual problems necessitating reoperation. J Am Soc Echocardiogr. 1993;6:356–65.

    CAS  PubMed  Google Scholar 

  117. Lee HR, Montenegro LM, Nicolson SC, Gaynor JW, Spray TL, Rychik J. Usefulness of intraoperative transesophageal echocardiography in predicting the degree of mitral regurgitation secondary to atrioventricular defect in children. Am J Cardiol. 1999;83:750–3.

    CAS  PubMed  Google Scholar 

  118. Ayres NA, Miller-Hance W, Fyfe DA, et al. Indications and guidelines for performance of transesophageal echocardiography in the patient with pediatric acquired or congenital heart disease: report from the task force of the pediatric council of the American society of echocardiography. J Am Soc Echocardiogr. 2005;18:91–8.

    PubMed  Google Scholar 

  119. Muhiudeen Russell IA, Miller-Hance WC, Silverman NH. Intraoperative transesophageal echocardiography for pediatric patients with congenital heart disease. Anesth Analg. 1998;87:1058–76.

    CAS  PubMed  Google Scholar 

  120. Kamra K, Russell I, Miller-Hance WC. Role of transesophageal echocardiography in the management of pediatric patients with congenital heart disease. Paediatr Anaesth. 2011;21:479–93.

    PubMed  Google Scholar 

  121. Stevenson JG. Incidence of complications in pediatric transesophageal echocardiography: experience in 1650 cases. J Am Soc Echocardiogr. 1999;12:527–32.

    CAS  PubMed  Google Scholar 

  122. Andropoulos DB, Stayer SA, Bent ST, Campos CJ, Fraser CD. The effects of transesophageal echocardiography on hemodynamic variables in small infants undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2000;14:133–5.

    CAS  PubMed  Google Scholar 

  123. Andropoulos DB, Ayres NA, Stayer SA, Bent ST, Campos CJ, Fraser CD. The effect of transesophageal echocardiography on ventilation in small infants undergoing cardiac surgery. Anesth Analg. 2000;90:47–9.

    CAS  PubMed  Google Scholar 

  124. Mart CR, Fehr DM, Myers JL, Rosen KL. Intraoperative transesophageal echocardiography in a 1.4-kg infant with complex congenital heart disease. Pediatr Cardiol. 2003;24:84–5.

    CAS  PubMed  Google Scholar 

  125. Zyblewski SC, Shirali GS, Forbus GA, et al. Initial experience with a miniaturized multiplane transesophageal probe in small infants undergoing cardiac operations. Ann Thorac Surg. 2010;89:1990–4.

    PubMed  Google Scholar 

  126. Ferry PC. Neurologic sequelae of cardiac surgery in children. Am J Dis Child. 1987;141:309–12.

    CAS  PubMed  Google Scholar 

  127. Ferry PC. Neurologic sequelae of open-heart surgery in children. An 'irritating question'. Am J Dis Child. 1990;144:369–73.

    CAS  PubMed  Google Scholar 

  128. Fallon P, Aparicio JM, Elliott MJ, Kirkham FJ. Incidence of neurological complications of surgery for congenital heart disease. Arch Dis Child. 1995;72:418–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Menache CC, du Plessis AJ, Wessel DL, Jonas RA, Newburger JW. Current incidence of acute neurologic complications after open- heart operations in children. Ann Thorac Surg. 2002;73:1752–8.

    PubMed  Google Scholar 

  130. Wernovsky G, Newburger J. Neurologic and developmental morbidity in children with complex congenital heart disease. J Pediatr. 2003;142:6–8.

    PubMed  Google Scholar 

  131. Dominguez TE, Wernovsky G, Gaynor JW. Cause and prevention of central nervous system injury in neonates undergoing cardiac surgery. Semin Thorac Cardiovasc Surg. 2007;19:269–77.

    PubMed  Google Scholar 

  132. Marino BS, Lipkin PH, Newburger JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American heart association. Circulation. 2012;126:1143–72.

    PubMed  Google Scholar 

  133. Andropoulos DB, Stayer SA, Diaz LK, Ramamoorthy C. Neurological monitoring for congenital heart surgery. Anesth Analg. 2004;99:1365–75.

    PubMed  Google Scholar 

  134. Ghanayem NS, Mitchell ME, Tweddell JS, Hoffman GM. Monitoring the brain before, during, and after cardiac surgery to improve long-term neurodevelopmental outcomes. Cardiol Young. 2006;16 Suppl 3:103–9.

    PubMed  Google Scholar 

  135. Williams GD, Ramamoorthy C. Brain monitoring and protection during pediatric cardiac surgery. Semin Cardiothorac Vasc Anesth. 2007;11:23–33.

    PubMed  Google Scholar 

  136. Kussman BD, Wypij D, DiNardo JA, et al. Cerebral oximetry during infant cardiac surgery: evaluation and relationship to early postoperative outcome. Anesth Analg. 2009;108:1122–31.

    PubMed Central  PubMed  Google Scholar 

  137. Kussman BD, Wypij D, Laussen PC, et al. Relationship of intraoperative cerebral oxygen saturation to neurodevelopmental outcome and brain magnetic resonance imaging at 1 year of age in infants undergoing biventricular repair. Circulation. 2010;122:245–54.

    PubMed Central  PubMed  Google Scholar 

  138. Hoffman GM, Brosig CL, Mussatto KA, Tweddell JS, Ghanayem NS. Perioperative cerebral oxygen saturation in neonates with hypoplastic left heart syndrome and childhood neurodevelopmental outcome. J Thorac Cardiovasc Surg. 2013;146:1153–64.

    PubMed  Google Scholar 

  139. Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198:1264–7.

    CAS  PubMed  Google Scholar 

  140. Fraser CDJ, Andropoulos DB. Neurologic monitoring for special cardiopulmonary bypass techniques. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2004;7:125–32.

    PubMed  Google Scholar 

  141. Hoffman GM. Neurologic monitoring on cardiopulmonary bypass: what are we obligated to do? Ann Thorac Surg. 2006;81:S2373–2380.

    PubMed  Google Scholar 

  142. Hoffman GM. Pro: near-infrared spectroscopy should be used for all cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2006;20:606–12.

    PubMed  Google Scholar 

  143. Gottlieb EA, Fraser CDJ, Andropoulos DB, Diaz LK. Bilateral monitoring of cerebral oxygen saturation results in recognition of aortic cannula malposition during pediatric congenital heart surgery. Paediatr Anaesth. 2006;16:787–9.

    PubMed  Google Scholar 

  144. Nelson DP, Andropoulos DB, Fraser CDJ. Perioperative neuroprotective strategies. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2008:49–56.

    Google Scholar 

  145. Andropoulos DB, Diaz LK, Fraser CDJ, McKenzie ED, Stayer SA. Is bilateral monitoring of cerebral oxygen saturation necessary during neonatal aortic arch reconstruction? Anesth Analg. 2004;98:1267–72.

    PubMed  Google Scholar 

  146. Kasman N, Brady K. Cerebral oximetry for pediatric anesthesia: why do intelligent clinicians disagree? Paediatr Anaesth. 2011;21:473–8.

    PubMed  Google Scholar 

  147. Hoffman GM, Stuth EA, Jaquiss RD, et al. Changes in cerebral and somatic oxygenation during stage 1 palliation of hypoplastic left heart syndrome using continuous regional cerebral perfusion. J Thorac Cardiovasc Surg. 2004;127:223–33.

    PubMed  Google Scholar 

  148. Dent CL, Spaeth JP, Jones BV, et al. Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg. 2006;131:190–7.

    PubMed  Google Scholar 

  149. Burrows FA. Transcranial Doppler monitoring of cerebral perfusion during cardiopulmonary bypass. Ann Thorac Surg. 1993;56:1482–4.

    CAS  PubMed  Google Scholar 

  150. Doblar DD. Intraoperative transcranial ultrasonic monitoring for cardiac and vascular surgery. Semin Cardiothorac Vasc Anesth. 2004;8:127–45.

    PubMed  Google Scholar 

  151. Zimmerman AA, Burrows FA, Jonas RA, Hickey PR. The limits of detectable cerebral perfusion by transcranial Doppler sonography in neonates undergoing deep hypothermic low-flow cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1997;114:594–600.

    CAS  PubMed  Google Scholar 

  152. Andropoulos DB, Stayer SA, McKenzie ED, Fraser CDJ. Novel cerebral physiologic monitoring to guide low-flow cerebral perfusion during neonatal aortic arch reconstruction. J Thorac Cardiovasc Surg. 2003;125:491–9.

    PubMed  Google Scholar 

  153. O'Brien JJ, Butterworth J, Hammon JW, Morris KJ, Phipps JM, Stump DA. Cerebral emboli during cardiac surgery in children. Anesthesiology. 1997;87:1063–9.

    PubMed  Google Scholar 

  154. Anand KJ, Hickey PR. Halothane-morphine compared with high-dose sufentanil for anesthesia and postoperative analgesia in neonatal cardiac surgery. N Engl J Med. 1992;326:1–9.

    CAS  PubMed  Google Scholar 

  155. Gruber EM, Laussen PC, Casta A, et al. Stress response in infants undergoing cardiac surgery: a randomized study of fentanyl bolus, fentanyl infusion, and fentanyl-midazolam infusion. Anesth Analg. 2001;92:882–90.

    CAS  PubMed  Google Scholar 

  156. Rivenes SM, Lewin MB, Stayer SA, et al. Cardiovascular effects of sevoflurane, isoflurane, halothane, and fentanyl-midazolam in children with congenital heart disease: an echocardiographic study of myocardial contractility and hemodynamics. Anesthesiology. 2001;94:223–9.

    CAS  PubMed  Google Scholar 

  157. Shen I, Giacomuzzi C, Ungerleider RM. Current strategies for optimizing the use of cardiopulmonary bypass in neonates and infants. Ann Thorac Surg. 2003;75:S729–734.

    PubMed  Google Scholar 

  158. Hickey E, Karamlou T, You J, Ungerleider RM. Effects of circuit miniaturization in reducing inflammatory response to infant cardiopulmonary bypass by elimination of allogeneic blood products. Ann Thorac Surg. 2006;81:S2367–2372.

    PubMed  Google Scholar 

  159. Koster A, Huebler M, Boettcher W, Redlin M, Berger F, Hetzer R. A new miniaturized cardiopulmonary bypass system reduces transfusion requirements during neonatal cardiac surgery: initial experience in 13 consecutive patients. J Thorac Cardiovasc Surg. 2009;137:1565–8.

    PubMed  Google Scholar 

  160. Redlin M, Habazettl H, Boettcher W, et al. Effects of a comprehensive blood-sparing approach using body weight-adjusted miniaturized cardiopulmonary bypass circuits on transfusion requirements in pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2012;144:493–9.

    PubMed  Google Scholar 

  161. Bojan M, Constanza Basto Duarte M, Lopez Lopez V, Tourneur L, Pouard P, Vouhe P. Use of a miniaturized cardiopulmonary bypass circuit in neonates and infants is associated with fewer blood product transfusions. ASAIO J. 2011;57:527–32.

    PubMed  Google Scholar 

  162. Golab HD, Scohy TV, de Jong PL, Kissler J, Takkenberg JJ, Bogers AJ. Relevance of colloid oncotic pressure regulation during neonatal and infant cardiopulmonary bypass: a prospective randomized study. Eur J Cardiothorac Surg. 2011;39:886–91.

    PubMed  Google Scholar 

  163. Markarian M. Heparin resistance in newborn infants. [letter]. J Pediatr. 1983;103:175.

    CAS  PubMed  Google Scholar 

  164. Guzzetta NA, Bajaj T, Fazlollah T, et al. A comparison of heparin management strategies in infants undergoing cardiopulmonary bypass. Anesth Analg. 2008;106:419–25.

    CAS  PubMed  Google Scholar 

  165. Guzzetta NA, Monitz HG, Fernandez JD, Fazlollah TM, Knezevic A, Miller BE. Correlations between activated clotting time values and heparin concentration measurements in young infants undergoing cardiopulmonary bypass. Anesth Analg. 2010;111:173–9.

    CAS  PubMed  Google Scholar 

  166. Jonas RA. Neurological protection during cardiopulmonary bypass/deep hypothermia. Pediatr Cardiol. 1998;19:321–30.

    CAS  PubMed  Google Scholar 

  167. Motta P, Mossad E, Toscana D, Zestos M, Mee R. Comparison of phenoxybenzamine to sodium nitroprusside in infants undergoing surgery. J Cardiothorac Vasc Anesth. 2005;19:54–9.

    CAS  PubMed  Google Scholar 

  168. Guzzetta NA. Phenoxybenzamine in the treatment of hypoplastic left heart syndrome: a core review. Anesth Analg. 2007;105:312–5.

    CAS  PubMed  Google Scholar 

  169. Mossad E, Motta P, Sehmbey K, Toscana D. The hemodynamic effects of phenoxybenzamine in neonates, infants, and children. J Clin Anesth. 2008;20:94–8.

    CAS  PubMed  Google Scholar 

  170. Bellinger DC, Wernovsky G, Rappaport LA, et al. Cognitive development of children following early repair of transposition of the great arteries using deep hypothermic circulatory arrest. Pediatrics. 1991;87:701–7.

    CAS  PubMed  Google Scholar 

  171. Muravchick S, Conrad DP, Vargas A. Peripheral temperature monitoring during cardiopulmonary bypass operation. Ann Thorac Surg. 1980;29:36–41.

    CAS  PubMed  Google Scholar 

  172. Ramsay JG, Ralley FE, Whalley DG, DelliColli P, Wynands JE. Site of temperature monitoring and prediction of afterdrop after open heart surgery. Can Anaesth Soc J. 1985;32:607–12.

    CAS  PubMed  Google Scholar 

  173. Shum-Tim D, Nagashima M, Shinoka T, et al. Postischemic hyperthermia exacerbates neurologic injury after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 1998;116:780–92.

    CAS  PubMed  Google Scholar 

  174. Bronicki RA, Chang AC. Management of the postoperative pediatric cardiac surgical patient. Crit Care Med. 2011;39:1974–84.

    PubMed  Google Scholar 

  175. Mastropietro CW. Arginine vasopressin in neonates after surgery for congenital heart disease: right from the start? Pediatr Crit Care Med. 2012;13:360–1.

    PubMed  Google Scholar 

  176. Noori S, Seri I. Neonatal blood pressure support: the use of inotropes, lusitropes, and other vasopressor agents. Clin Perinatol. 2012;39:221–38.

    PubMed  Google Scholar 

  177. Alten JA, Borasino S, Toms R, Law MA, Moellinger A, Dabal RJ. Early initiation of arginine vasopressin infusion in neonates after complex cardiac surgery. Pediatr Crit Care Med. 2012;13:300–4.

    PubMed  Google Scholar 

  178. Chang AC, Atz AM, Wernovsky G, Burke RP, Wessel DL. Milrinone: systemic and pulmonary hemodynamic effects in neonates after cardiac surgery. Crit Care Med. 1995;23:1907–14.

    CAS  PubMed  Google Scholar 

  179. Hoffman TM, Wernovsky G, Atz AM, et al. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation. 2003;107:996–1002.

    CAS  PubMed  Google Scholar 

  180. Hoffman TM, Wernovsky G, Atz AM, et al. Prophylactic intravenous use of milrinone after cardiac operation in pediatrics (PRIMACORP) study. Prophylactic intravenous use of milrinone after cardiac operation in pediatrics. Am Heart J. 2002;143:15–21.

    CAS  PubMed  Google Scholar 

  181. Ozker E, Saritas B, Vuran C, Yoruker U, Ulugol H, Turkoz R. Delayed sternal closure after pediatric cardiac operations; single center experience: a retrospective study. J Cardiothorac Surg. 2012;7:102.

    PubMed Central  PubMed  Google Scholar 

  182. Heinle JS, Diaz LK, Fox LS. Early extubation after cardiac operations in neonates and young infants. J Thorac Cardiovasc Surg. 1997;114:413–8.

    CAS  PubMed  Google Scholar 

  183. Wolf AR, Jackman L. Analgesia and sedation after pediatric cardiac surgery. Paediatr Anaesth. 2011;21:567–76.

    PubMed  Google Scholar 

  184. Wypij D, Newburger JW, Rappaport LA, et al. The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: the Boston circulatory arrest trial. J Thorac Cardiovasc Surg. 2003;126:1397–403.

    PubMed  Google Scholar 

  185. Pigula FA. Surgery for aortic arch disease in the neonate. Pediatr Cardiol. 2007;28:134–43.

    PubMed  Google Scholar 

  186. Newburger JW, Jonas RA, Wernovsky G, et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N Engl J Med. 1993;329:1057–64.

    CAS  PubMed  Google Scholar 

  187. Kilpack VD, Stayer SA, McKenzie ED, Fraser CDJ, Andropoulos DB. Limiting circulatory arrest using regional low flow perfusion. J Extra Corpor Technol. 2004;36:133–8.

    PubMed  Google Scholar 

  188. Algra SO, Kornmann VN, van der Tweel I, Schouten AN, Jansen NJ, Haas F. Increasing duration of circulatory arrest, but not antegrade cerebral perfusion, prolongs postoperative recovery after neonatal cardiac surgery. J Thorac Cardiovasc Surg. 2012;143:375–82.

    PubMed  Google Scholar 

  189. Fraser CDJ, Andropoulos DB. Principles of antegrade cerebral perfusion during arch reconstruction in newborns/infants. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2008;61–68.

    Google Scholar 

  190. Andropoulos DB, Easley RB, Brady K, et al. Neurodevelopmental outcomes after regional cerebral perfusion with neuromonitoring for neonatal aortic arch reconstruction. Ann Thorac Surg. 2013;95:648–55.

    PubMed Central  PubMed  Google Scholar 

  191. Duebener LF, Hagino I, Sakamoto T, et al. Effects of pH management during deep hypothermic bypass on cerebral microcirculation: alpha-stat versus pH-stat. Circulation. 2002;106:I103–108.

    PubMed  Google Scholar 

  192. Griffin DA. Blood gas strategies and management during pediatric cardiopulmonary bypass. ASAIO J. 2005;51:657–8.

    PubMed  Google Scholar 

  193. Montenegro LM, Greeley WJ. Pro: the use of modified ultrafiltration during pediatric cardiac surgery is a benefit. J Cardiothorac Vasc Anesth. 1998;12:480–2.

    CAS  PubMed  Google Scholar 

  194. Elliott MJ. Ultrafiltration and modified ultrafiltration in pediatric open heart operations. Ann Thorac Surg. 1993;56:1518–22.

    CAS  PubMed  Google Scholar 

  195. Journois D, Pouard P, Greeley WJ, Mauriat P, Vouhe P, Safran D. Hemofiltration during cardiopulmonary bypass in pediatric cardiac surgery. Effects on hemostasis, cytokines, and complement components. Anesthesiology. 1994;81:1181–9 (discussion 26A–27A).

    Google Scholar 

  196. Kuratani N, Bunsangjaroen P, Srimueang T, Masaki E, Suzuki T, Katogi T. Modified versus conventional ultrafiltration in pediatric cardiac surgery: a meta-analysis of randomized controlled trials comparing clinical outcome parameters. J Thorac Cardiovasc Surg. 2011;142:861–7.

    PubMed  Google Scholar 

  197. Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg. 2003;126:1765–74.

    PubMed  Google Scholar 

  198. Steven J, Nicolson S. Perioperative management of blood glucose during open heart surgery in infants and children. Paediatr Anaesth. 2011;21:530–7.

    PubMed  Google Scholar 

  199. Yates AR, Dyke PC, Taeed R, et al. Hyperglycemia is a marker for poor outcome in the postoperative pediatric cardiac patient. Pediatr Crit Care Med. 2006;7:351–5.

    PubMed  Google Scholar 

  200. Polito A, Thiagarajan RR, Laussen PC, et al. Association between intraoperative and early postoperative glucose levels and adverse outcomes after complex congenital heart surgery. Circulation. 2008;118:2235–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Scohy TV, Golab HD, Egal M, Takkenberg JJ, Bogers AJ. Intraoperative glycemic control without insulin infusion during pediatric cardiac surgery for congenital heart disease. Paediatr Anaesth. 2011;21:872–9.

    PubMed  Google Scholar 

  202. Floyd TF, Horak J. Con: tight perioperative glycemic control. J Cardiothorac Vasc Anesth. 2009;23:906–8.

    PubMed  Google Scholar 

  203. DeCampli WM, Olsen MC, Munro HM, Felix DE. Perioperative hyperglycemia: effect on outcome after infant congenital heart surgery. Ann Thorac Surg. 2010;89:181–5.

    PubMed  Google Scholar 

  204. Rubens FD, Mesana T. The inflammatory response to cardiopulmonary bypass: a therapeutic overview. Perfusion. 2004;19 Suppl 1:S5–12.

    PubMed  Google Scholar 

  205. Kozik DJ, Tweddell JS. Characterizing the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg. 2006;81:S2347–2354.

    PubMed  Google Scholar 

  206. Hall RI, Smith MS, Rocker G. The systemic inflammatory response to cardiopulmonary bypass: pathophysiological, therapeutic, and pharmacological considerations. Anesth Analg. 1997;85:766–82.

    CAS  PubMed  Google Scholar 

  207. Laffey JG, Boylan JF, Cheng DC. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology. 2002;97:215–52.

    CAS  PubMed  Google Scholar 

  208. Seghaye MC, Grabitz RG, Duchateau J, et al. Inflammatory reaction and capillary leak syndrome related to cardiopulmonary bypass in neonates undergoing cardiac operations. J Thorac Cardiovasc Surg. 1996;112:687–97.

    CAS  PubMed  Google Scholar 

  209. Seghaye MC. The clinical implications of the systemic inflammatory reaction related to cardiac operations in children. Cardiol Young. 2003;13:228–39.

    PubMed  Google Scholar 

  210. Bronicki RA, Backer CL, Baden HP, Mavroudis C, Crawford SE, Green TP. Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg. 2000;69:1490–5.

    CAS  PubMed  Google Scholar 

  211. Schroeder VA, Pearl JM, Schwartz SM, Shanley TP, Manning PB, Nelson DP. Combined steroid treatment for congenital heart surgery improves oxygen delivery and reduces postbypass inflammatory mediator expression. Circulation. 2003;107:2823–8.

    CAS  PubMed  Google Scholar 

  212. Checchia PA, Bronicki RA, Costello JM, Nelson DP. Steroid use before pediatric cardiac operations using cardiopulmonary bypass: an international survey of 36 centers. Pediatr Crit Care Med. 2005;6:441–4.

    PubMed  Google Scholar 

  213. Heying R, Wehage E, Schumacher K, et al. Dexamethasone pretreatment provides antiinflammatory and myocardial protection in neonatal arterial switch operation. Ann Thorac Surg. 2012;93:869–76.

    PubMed  Google Scholar 

  214. Eaton MP, Iannoli EM. Coagulation considerations for infants and children undergoing cardiopulmonary bypass. Paediatr Anaesth. 2011;21:31–42.

    PubMed  Google Scholar 

  215. Guzzetta NA, Miller BE. Principles of hemostasis in children: models and maturation. Paediatr Anaesth. 2011;21:3–9.

    PubMed  Google Scholar 

  216. Kern FH, Morana NJ, Sears JJ, Hickey PR. Coagulation defects in neonates during cardiopulmonary bypass. Ann Thorac Surg. 1992;54:541–6.

    CAS  PubMed  Google Scholar 

  217. Mauer HM, McCue CM, Caul J, Still WJ. Impairment in platelet aggregation in congenital heart disease. Blood. 1972;40:207–16.

    CAS  PubMed  Google Scholar 

  218. Kneyber MC, Hersi MI, Twisk JW, Markhorst DG, Plotz FB. Red blood cell transfusion in critically ill children is independently associated with increased mortality. Intensive Care Med. 2007;33:1414–22.

    PubMed  Google Scholar 

  219. Szekely A, Cserep Z, Sapi E, et al. Risks and predictors of blood transfusion in pediatric patients undergoing open heart operations. Ann Thorac Surg. 2009;87:187–97.

    PubMed  Google Scholar 

  220. Kipps AK, Wypij D, Thiagarajan RR, Bacha EA, Newburger JW. Blood transfusion is associated with prolonged duration of mechanical ventilation in infants undergoing reparative cardiac surgery. Pediatr Crit Care Med. 2011;12:52–6.

    PubMed Central  PubMed  Google Scholar 

  221. Salvin JW, Scheurer MA, Laussen PC, et al. Blood transfusion after pediatric cardiac surgery is associated with prolonged hospital stay. Ann Thorac Surg. 2011;91:204–10.

    PubMed  Google Scholar 

  222. Guzzetta NA. Benefits and risks of red blood cell transfusion in pediatric patients undergoing cardiac surgery. Paediatr Anaesth. 2011;21:504–11.

    PubMed  Google Scholar 

  223. Gruenwald CE, Manlhiot C, Chan AK, et al. Randomized, controlled trial of individualized heparin and protamine management in infants undergoing cardiac surgery with cardiopulmonary bypass. J Am Coll Cardiol. 2010;56:1794–802.

    CAS  PubMed  Google Scholar 

  224. Andreasen JB, Hvas AM, Christiansen K, Ravn HB. Can RoTEM(R) analysis be applied for haemostatic monitoring in paediatric congenital heart surgery? Cardiol Young. 2011;21:684–91.

    PubMed  Google Scholar 

  225. Hofer A, Kozek-Langenecker S, Schaden E, Panholzer M, Gombotz H. Point-of-care assessment of platelet aggregation in paediatric open heart surgery. Br J Anaesth. 2011;107:587–92.

    CAS  PubMed  Google Scholar 

  226. Abdel Raheem MM, Mohamed WA. Impact of congenital heart disease on brain development in newborn infants. Ann Pediatr Cardiol. 2012;5:21–6.

    PubMed Central  PubMed  Google Scholar 

  227. Miller BE, Guzzetta NA, Tosone SR, Levy JH. Rapid evaluation of coagulopathies after cardiopulmonary bypass in children using modified thromboelastography. Anesth Analg. 2000;90:1324–30.

    CAS  PubMed  Google Scholar 

  228. Romlin BS, Wahlander H, Berggren H, et al. Intraoperative thromboelastometry is associated with reduced transfusion prevalence in pediatric cardiac surgery. Anesth Analg. 2011;112:30–6.

    PubMed  Google Scholar 

  229. Gautam NK, Schmitz ML, Harrison D, et al. Impact of protamine dose on activated clotting time and thromboelastography in infants and small children undergoing cardiopulmonary bypass. Paediatr Anaesth. 2013;23:233–41.

    PubMed  Google Scholar 

  230. Eaton MP. Antifibrinolytic therapy in surgery for congenital heart disease. Anesth Analg. 2008;106:1087–100.

    CAS  PubMed  Google Scholar 

  231. Hill GE, Pohorecki R, Alonso A, Rennard SI, Robbins RA. Aprotinin reduces interleukin-8 production and lung neutrophil accumulation after cardiopulmonary bypass. Anesth Analg. 1996;83:696–700.

    CAS  PubMed  Google Scholar 

  232. Pasquali SK, Li JS, He X, et al. Comparative analysis of antifibrinolytic medications in pediatric heart surgery. J Thorac Cardiovasc Surg. 2012;143:550–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  233. Coleman CI, Rigali VT, Hammond J, Kluger J, Jeleniowski KW, White CM. Evaluating the safety implications of aprotinin use: the retrospective evaluation of aprotinin in cardio thoracic surgery (REACTS). J Thorac Cardiovasc Surg. 2007;133:1547–52.

    PubMed  Google Scholar 

  234. Guzzetta NA, Evans FM, Rosenberg ES, et al. The impact of aprotinin on postoperative renal dysfunction in neonates undergoing cardiopulmonary bypass: a retrospective analysis. Anesth Analg. 2009;108:448–55.

    CAS  PubMed  Google Scholar 

  235. Bojan M, Vicca S, Boulat C, Gioanni S, Pouard P. Aprotinin, transfusions, and kidney injury in neonates and infants undergoing cardiac surgery. Br J Anaesth. 2012;108:830–7.

    CAS  PubMed  Google Scholar 

  236. Kylasam S, Mos K, Fijtin S, Webster B, Chard R, Egan J. Recombinant activated factor VII following pediatric cardiac surgery. J Intensive Care Med. 2009;24:116–21.

    PubMed  Google Scholar 

  237. Pychynska-Pokorska M, Pagowska-Klimek I, Krajewski W, Moll JJ. Use of recombinant activated factor VII for controlling refractory postoperative bleeding in children undergoing cardiac surgery with cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2011;25:987–94.

    CAS  PubMed  Google Scholar 

  238. Guzzetta NA, Russell IA, Williams GD. Review of the off-label use of recombinant activated factor VII in pediatric cardiac surgery patients. Anesth Analg. 2012;115:364–78.

    CAS  PubMed  Google Scholar 

  239. del Nido PJ. Developmental and neurologic outcomes late after neonatal corrective surgery. J Thorac Cardiovasc Surg. 2002;124:425–7.

    PubMed  Google Scholar 

  240. Hovels-Gurich HH, Seghaye MC, Schnitker R, et al. Long-term neurodevelopmental outcomes in school-aged children after neonatal arterial switch operation. J Thorac Cardiovasc Surg. 2002;124:448–58.

    PubMed  Google Scholar 

  241. Walker K, Holland AJ, Winlaw D, Sherwood M, Badawi N. Neurodevelopmental outcomes and surgery in neonates. J Paediatr Child Health. 2006;42:749–51.

    PubMed  Google Scholar 

  242. Gaynor JW, Nicolson SC, Jarvik GP, et al. Increasing duration of deep hypothermic circulatory arrest is associated with an increased incidence of postoperative electroencephalographic seizures. J Thorac Cardiovasc Surg. 2005;130:1278–86.

    PubMed Central  PubMed  Google Scholar 

  243. Gaynor JW, Jarvik GP, Bernbaum J, et al. The relationship of postoperative electrographic seizures to neurodevelopmental outcome at 1 year of age after neonatal and infant cardiac surgery. J Thorac Cardiovasc Surg. 2006;131:181–9.

    PubMed Central  PubMed  Google Scholar 

  244. Chen J, Zimmerman RA, Jarvik GP, et al. Perioperative stroke in infants undergoing open heart operations for congenital heart disease. Ann Thorac Surg. 2009;88:823–9.

    PubMed Central  PubMed  Google Scholar 

  245. Galli KK, Zimmerman RA, Jarvik GP, et al. Periventricular leukomalacia is common after neonatal cardiac surgery. J Thorac Cardiovasc Surg. 2004;127:692–704.

    PubMed  Google Scholar 

  246. Gaynor JW. Periventricular leukomalacia following neonatal and infant cardiac surgery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2004;7:133–40.

    PubMed  Google Scholar 

  247. Kirkham FJ. Recognition and prevention of neurological complications in pediatric cardiac surgery. Pediatr Cardiol. 1998;19:331–45.

    CAS  PubMed  Google Scholar 

  248. Kaltman JR, Jarvik GP, Bernbaum J, et al. Neurodevelopmental outcome after early repair of a ventricular septal defect with or without aortic arch obstruction. J Thorac Cardiovasc Surg. 2006;131:792–8.

    PubMed  Google Scholar 

  249. Schultz AH, Jarvik GP, Wernovsky G, et al. Effect of congenital heart disease on neurodevelopmental outcomes within multiple-gestation births. J Thorac Cardiovasc Surg. 2005;130:1511–6.

    PubMed  Google Scholar 

  250. Tabbutt S, Nord AS, Jarvik GP, et al. Neurodevelopmental outcomes after staged palliation for hypoplastic left heart syndrome. Pediatrics. 2008;121:476–83.

    PubMed  Google Scholar 

  251. Gaynor JW, Wernovsky G, Jarvik GP, et al. Patient characteristics are important determinants of neurodevelopmental outcome at one year of age after neonatal and infant cardiac surgery. J Thorac Cardiovasc Surg. 2007;133:1344–53, 1353.e1-3.

    Google Scholar 

  252. Andropoulos DB, Easley RB, Brady K, et al. Changing expectations for neurological outcomes after the neonatal arterial switch operation. Ann Thorac Surg. 2012;94:1250–5 (discussion 1255–1256).

    PubMed Central  PubMed  Google Scholar 

  253. Tabbutt S, Gaynor JW, Newburger JW. Neurodevelopmental outcomes after congenital heart surgery and strategies for improvement. Curr Opin Cardiol. 2012;27:82–91.

    PubMed  Google Scholar 

  254. Bellinger DC, Wypij D, Kuban KC, et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation. 1999;100:526–32.

    CAS  PubMed  Google Scholar 

  255. Groom RC, Hill AG, Akl B, Lefrak EA, Kurusz M. Rapid cooling: a potentially dangerous practice.[letter]. Perfusion. 1994;9:142–3.

    CAS  PubMed  Google Scholar 

  256. Laussen PC. Optimal blood gas management during deep hypothermic paediatric cardiac surgery: alpha-stat is easy, but pH-stat may be preferable. Paediatr Anaesth. 2002;12:199–204.

    PubMed  Google Scholar 

  257. Newburger JW, Jonas RA, Soul J, et al. Randomized trial of hematocrit 25 % versus 35 % during hypothermic cardiopulmonary bypass in infant heart surgery. J Thorac Cardiovasc Surg. 2008;135:347–54, 354.e1-4.

    Google Scholar 

  258. Wypij D, Jonas RA, Bellinger DC, et al. The effect of hematocrit during hypothermic cardiopulmonary bypass in infant heart surgery: results from the combined Boston hematocrit trials. J Thorac Cardiovasc Surg. 2008;135:355–60.

    PubMed  Google Scholar 

  259. Limperopoulos C, Majnemer A, Shevell MI, Rosenblatt B, Rohlicek C, Tchervenkov C. Neurologic status of newborns with congenital heart defects before open heart surgery. Pediatrics. 1999;103:402–8.

    CAS  PubMed  Google Scholar 

  260. Miller SP, McQuillen PS, Hamrick S, et al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med. 2007;357:1928–38.

    CAS  PubMed  Google Scholar 

  261. Andropoulos DB, Hunter JV, Nelson DP, et al. Brain immaturity is associated with brain injury before and after neonatal cardiac surgery with high-flow bypass and cerebral oxygenation monitoring. J Thorac Cardiovasc Surg. 2010;139:543–56.

    PubMed Central  PubMed  Google Scholar 

  262. McQuillen PS, Miller SP. Congenital heart disease and brain development. Ann N Y Acad Sci. 2010;1184:68–86.

    CAS  PubMed  Google Scholar 

  263. Clouchoux C, du Plessis AJ, Bouyssi-Kobar M, et al. Delayed cortical development in fetuses with complex congenital heart disease. Cereb Cortex. 2013;23:2932–43.

    CAS  PubMed  Google Scholar 

  264. Goff DA, Luan X, Gerdes M, et al. Younger gestational age is associated with worse neurodevelopmental outcomes after cardiac surgery in infancy. J Thorac Cardiovasc Surg. 2012;143:535–42.

    PubMed  Google Scholar 

  265. McQuillen PS, Goff DA, Licht DJ. Effects of congenital heart disease on brain development. Prog Pediatr Cardiol. 2010;29:79–85.

    PubMed Central  PubMed  Google Scholar 

  266. Zeltser I, Jarvik GP, Bernbaum J, et al. Genetic factors are important determinants of neurodevelopmental outcome after repair of tetralogy of Fallot. J Thorac Cardiovasc Surg. 2008;135:91–7.

    CAS  PubMed  Google Scholar 

  267. Licht DJ, Shera DM, Clancy RR, et al. Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg. 2009;137:529–36 (discussion 536–7).

    PubMed Central  PubMed  Google Scholar 

  268. McQuillen PS, Hamrick SE, Perez MJ, et al. Balloon atrial septostomy is associated with preoperative stroke in neonates with transposition of the great arteries. Circulation. 2006;113:280–5.

    PubMed  Google Scholar 

  269. Petit CJ, Rome JJ, Wernovsky G, et al. Preoperative brain injury in transposition of the great arteries is associated with oxygenation and time to surgery, not balloon atrial septostomy. Circulation. 2009;119:709–16.

    PubMed Central  PubMed  Google Scholar 

  270. Beca J, Gunn J, Coleman L, et al. Pre-operative brain injury in newborn infants with transposition of the great arteries occurs at rates similar to other complex congenital heart disease and is not related to balloon atrial septostomy. J Am Coll Cardiol. 2009;53:1807–11.

    PubMed  Google Scholar 

  271. Mintz CD, Wagner M, Loepke AW. Preclinical research into the effects of anesthetics on the developing brain: promises and pitfalls. J Neurosurg Anesthesiol. 2012;24:362–7.

    PubMed  Google Scholar 

  272. Shih J, May LDV, Gonzalez HE, Lee EW, et al. Delayed environmental enrichment reverses sevoflurane-induced memory impairment in rats. Anesthesiology. 2012;116:586–602.

    PubMed Central  CAS  PubMed  Google Scholar 

  273. Ramsay JG, Roizen M. SmartTots: a public-private partnership between the United States food and drug administration (FDA) and the international anesthesia research society (IARS). Paediatr Anaesth. 2012;22:969–72.

    PubMed  Google Scholar 

  274. Vutskits L, Davis PJ, Hansen TG. Anesthetics and the developing brain: time for a change in practice? A pro/con debate. Paediatr Anaesth. 2012;22:973–80.

    PubMed  Google Scholar 

  275. Hirsch JC, Jacobs ML, Andropoulos D, et al. Protecting the infant brain during cardiac surgery: a systematic review. Ann Thorac Surg. 2012;94:1365–73 (discussion 1373).

    PubMed Central  PubMed  Google Scholar 

  276. Andropoulos DB, Brady KM, Easley RB, Fraser CDJ. Neuroprotection in pediatric cardiac surgery: what is on the horizon? Prog Pediatr Cardiol. 2010;29:113–22.

    PubMed Central  PubMed  Google Scholar 

  277. Chai PJ, Williamson JA, Lodge AJ, et al. Effects of ischemia on pulmonary dysfunction after cardiopulmonary bypass. Ann Thorac Surg. 1999;67:731–5.

    CAS  PubMed  Google Scholar 

  278. Hachenberg T, Tenling A, Nystrom SO, Tyden H, Hedenstierna G. Ventilation-perfusion inequality in patients undergoing cardiac surgery. Anesthesiology. 1994;80:509–19.

    CAS  PubMed  Google Scholar 

  279. von Ungern-Sternberg BS, Petak F, Saudan S, Pellegrini M, Erb TO, Habre W. Effect of cardiopulmonary bypass and aortic clamping on functional residual capacity and ventilation distribution in children. J Thorac Cardiovasc Surg. 2007;134:1193–8.

    Google Scholar 

  280. Friedman M, Sellke FW, Wang SY, Weintraub RM, Johnson RG. Parameters of pulmonary injury after total or partial cardiopulmonary bypass. Circulation. 1994;90:II262–268.

    CAS  PubMed  Google Scholar 

  281. Apostolakis EE, Koletsis EN, Baikoussis NG, Siminelakis SN, Papadopoulos GS. Strategies to prevent intraoperative lung injury during cardiopulmonary bypass. J Cardiothorac Surg. 2010;5:1.

    PubMed Central  PubMed  Google Scholar 

  282. Kagawa H, Morita K, Nagahori R, Shinohara G, Kinouchi K, Hashimoto K. Prevention of ischemia/reperfusion-induced pulmonary dysfunction after cardiopulmonary bypass with terminal leukocyte-depleted lung reperfusion. J Thorac Cardiovasc Surg. 2010;139:174–80.

    PubMed  Google Scholar 

  283. Blatchford JWr, Barragry TP, Lillehei TJ, Ring WS. Effects of cardioplegic arrest on left ventricular systolic and diastolic function of the intact neonatal heart. J Thorac Cardiovasc Surg. 1994;107:527–35.

    Google Scholar 

  284. Skippen PW, Krahn GE. Acute renal failure in children undergoing cardiopulmonary bypass. Crit Care Resusc. 2005;7:286–91.

    CAS  PubMed  Google Scholar 

  285. Kist-van Holthe tot Echten JE, Goedvolk CA, Doornaar MB, et al. Acute renal insufficiency and renal replacement therapy after pediatric cardiopulmonary bypass surgery. Pediatr Cardiol. 2001;22:321–326.

    Google Scholar 

  286. Sethi SK, Goyal D, Yadav DK, et al. Predictors of acute kidney injury post-cardiopulmonary bypass in children. Clin Exp Nephrol. 2011;15:529–34.

    PubMed  Google Scholar 

  287. Aydin SI, Seiden HS, Blaufox AD, et al. Acute kidney injury after surgery for congenital heart disease. Ann Thorac Surg. 2012;94:1589–95.

    PubMed  Google Scholar 

  288. Blinder JJ, Goldstein SL, Lee VV, et al. Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J Thorac Cardiovasc Surg. 2012;143:368–74.

    PubMed  Google Scholar 

  289. Jetton JG, Askenazi DJ. Update on acute kidney injury in the neonate. Curr Opin Pediatr. 2012;24:191–6.

    CAS  PubMed  Google Scholar 

  290. Chiravuri SD, Riegger LQ, Christensen R, et al. Factors associated with acute kidney injury or failure in children undergoing cardiopulmonary bypass: a case-controlled study. Paediatr Anaesth. 2011;21:880–6.

    PubMed  Google Scholar 

  291. Sorof JM, Stromberg D, Brewer ED, Feltes TF, Fraser CDJ. Early initiation of peritoneal dialysis after surgical repair of congenital heart disease. Pediatr Nephrol. 1999;13:641–5.

    CAS  PubMed  Google Scholar 

  292. Bojan M, Gioanni S, Vouhe PR, Journois D, Pouard P. Early initiation of peritoneal dialysis in neonates and infants with acute kidney injury following cardiac surgery is associated with a significant decrease in mortality. Kidney Int. 2012;82:474–81.

    CAS  PubMed  Google Scholar 

  293. Allen KB, Salam AA, Lumsden AB. Acute mesenteric ischemia after cardiopulmonary bypass. J Vasc Surg. 1992;16:391–5 (discussion 395–396).

    CAS  PubMed  Google Scholar 

  294. Ott MJ, Buchman TG, Baumgartner WA. Postoperative abdominal complications in cardiopulmonary bypass patients: a case-controlled study. Ann Thorac Surg. 1995;59:1210–3.

    CAS  PubMed  Google Scholar 

  295. Carlo WF, Kimball TR, Michelfelder EC, Border WL. Persistent diastolic flow reversal in abdominal aortic Doppler-flow profiles is associated with an increased risk of necrotizing enterocolitis in term infants with congenital heart disease. Pediatrics. 2007;119:330–5.

    PubMed  Google Scholar 

  296. Stapleton GE, Eble BK, Dickerson HA, Andropoulos DB, Chang AC. Mesenteric oxygen desaturation in an infant with congenital heart disease and necrotizing enterocolitis. Tex Heart Inst J. 2007;34:442–4.

    PubMed Central  PubMed  Google Scholar 

  297. Shteyer E, Yatsiv I, Sharkia M, Milgarter E, Granot E. Serum transaminases as a prognostic factor in children post cardiac surgery. Pediatr Int. 2011;53:725–8.

    CAS  PubMed  Google Scholar 

  298. Farouk A, Karimi M, Henderson M, Ostrowsky J, Siwik E, Hennein H. Cerebral regional oxygenation during aortic coarctation repair in pediatric population. Eur J Cardiothorac Surg. 2008;34:26–31.

    PubMed  Google Scholar 

  299. Shah RK, Mora BN, Bacha E, et al. The presentation and management of vascular rings: an otolaryngology perspective. Int J Pediatr Otorhinolaryngol. 2007;71:57–62.

    PubMed  Google Scholar 

  300. Kussman BD, Geva T, McGowan FX. Cardiovascular causes of airway compression. Paediatr Anaesth. 2004;14:60–74.

    PubMed  Google Scholar 

  301. Dillman JR, Attili AK, Agarwal PP, Dorfman AL, Hernandez RJ, Strouse PJ. Common and uncommon vascular rings and slings: a multi-modality review. Pediatr Radiol. 2011;41:1440–54 (quiz 1489–90).

    PubMed  Google Scholar 

  302. Hernanz-Schulman M. Vascular rings: a practical approach to imaging diagnosis. Pediatr Radiol. 2005;35:961–79.

    PubMed  Google Scholar 

  303. Backer CL, Mavroudis C, Rigsby CK, Holinger LD. Trends in vascular ring surgery. J Thorac Cardiovasc Surg. 2005;129:1339–47.

    PubMed  Google Scholar 

  304. Duncan BW. Mechanical circulatory support for infants and children with cardiac disease. Ann Thorac Surg. 2002;73:1670–7.

    PubMed  Google Scholar 

  305. Morales DL, Zafar F, Rossano JW, et al. Use of ventricular assist devices in children across the United States: analysis of 7.5 million pediatric hospitalizations. Ann Thorac Surg. 2010;90:1313–8.

    PubMed  Google Scholar 

  306. Checchia PA. Perioperative mechanical circulatory support in children with critical heart disease. Curr Treat Options Cardiovasc Med. 2011;13:414–24.

    PubMed  Google Scholar 

  307. del Nido PJ, Dalton HJ, Thompson AE, Siewers RD. Extracorporeal membrane oxygenator rescue in children during cardiac arrest after cardiac surgery. Circulation. 1992;86:II300–4.

    PubMed  Google Scholar 

  308. Walters HLr, Hakimi M, Rice MD, Lyons JM, Whittlesey GC, Klein MD. Pediatric cardiac surgical ECMO: multivariate analysis of risk factors for hospital death. Ann Thorac Surg. 1995;60:329–36 (discussion 336–7).

    Google Scholar 

  309. Aharon AS, Drinkwater DCJ, Churchwell KB, et al. Extracorporeal membrane oxygenation in children after repair of congenital cardiac lesions. Ann Thorac Surg. 2001;72:2095–101 (discussion 2101–2102).

    CAS  PubMed  Google Scholar 

  310. Dalton HJ, Rycus PT, Conrad SA. Update on extracorporeal life support 2004. Semin Perinatol. 2005;29:24–33.

    PubMed  Google Scholar 

  311. Adachi I, Fraser CDJ. Mechanical circulatory support for infants and small children. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2011;14:38–44.

    PubMed  Google Scholar 

  312. Hetzer R, Alexi-Meskishvili V, Weng Y, et al. Mechanical cardiac support in the young with the Berlin Heart EXCOR pulsatile ventricular assist device: 15 years' experience. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2006:99–108.

    Google Scholar 

  313. Fraser CDJ, Jaquiss RD, Rosenthal DN, et al. Prospective trial of a pediatric ventricular assist device. N Engl J Med. 2012;367:532–41.

    CAS  PubMed  Google Scholar 

  314. Konertz W, Hotz H, Schneider M, Redlin M, Reul H. Clinical experience with the MEDOS HIA-VAD system in infants and children: a preliminary report. Ann Thorac Surg. 1997;63:1138–44.

    CAS  PubMed  Google Scholar 

  315. Fragasso T, Ricci Z, Grutter G, et al. Incidence of healthcare-associated infections in a pediatric population with an extracorporeal ventricular assist device. Artif Organs. 2011;35:1110–4.

    PubMed  Google Scholar 

  316. Joffe AR, Lequier L, Robertson CM. Pediatric outcomes after extracorporeal membrane oxygenation for cardiac disease and for cardiac arrest: a review. ASAIO J. 2012;58:297–310.

    CAS  PubMed  Google Scholar 

  317. Brancaccio G, Amodeo A, Ricci Z, et al. Mechanical assist device as a bridge to heart transplantation in children less than 10 kilograms. Ann Thorac Surg. 2010;90:58–62.

    PubMed  Google Scholar 

  318. Gazit AZ, Gandhi SK, Canter CC. Mechanical circulatory support of the critically ill child awaiting heart transplantation. Curr Cardiol Rev. 2010;6:46–53.

    PubMed Central  PubMed  Google Scholar 

  319. Brancaccio G, Filippelli S, Michielon G, et al. Ventricular assist devices as a bridge to heart transplantation or as destination therapy in pediatric patients. Transplant Proc. 2012;44:2007–12.

    Google Scholar 

  320. Yuki K, Sharma R, DiNardo J. Ventricular-assist device therapy in children. Best Pract Res Clin Anaesthesiol. 2012;26:247–64.

    PubMed  Google Scholar 

  321. Cave DA, Fry KM, Buchholz H. Anesthesia for noncardiac procedures for children with a Berlin heart EXCOR pediatric ventricular assist device: a case series. Paediatr Anaesth. 2010;20:647–59.

    PubMed  Google Scholar 

  322. Pratap JN, Wilmshurst S. Anesthetic management of children with in situ Berlin heart EXCOR. Paediatr Anaesth. 2010;20:812–20.

    PubMed  Google Scholar 

  323. Haynes S, Cassidy J, Murphy T, McClintock J, Smith J, McCheyne A. Pratap JN, Wilmhurst S: Anesthetic management of children with in situ Berlin heart EXCOR: pediatric anesthesia: 2010: 20: 812–820. Paediatr Anaesth. 2010;20:1137–8.

    PubMed  Google Scholar 

  324. Tulloh RM. Congenital heart disease in relation to pulmonary hypertension in paediatric practice. Paediatr Respir Rev. 2005;6:174–80.

    PubMed  Google Scholar 

  325. Tulloh R. Etiology, diagnosis, and pharmacologic treatment of pediatric pulmonary hypertension. Paediatr Drugs. 2009;11:115–28.

    PubMed  Google Scholar 

  326. Suzuki K, Yamaki S, Mimori S, et al. Pulmonary vascular disease in Down's syndrome with complete atrioventricular septal defect. Am J Cardiol. 2000;86:434–7.

    CAS  PubMed  Google Scholar 

  327. Bando K, Turrentine MW, Sharp TG, et al. Pulmonary hypertension after operations for congenital heart disease: analysis of risk factors and management. J Thorac Cardiovasc Surg. 1996;112:1600–7. discussion 1607–1609.

    CAS  PubMed  Google Scholar 

  328. Friesen RH, Williams GD. Anesthetic management of children with pulmonary arterial hypertension. Paediatr Anaesth. 2008;18:208–16.

    PubMed  Google Scholar 

  329. Bronicki RA. Perioperative management of pulmonary hypertension in children with critical heart disease. Curr Treat Options Cardiovasc Med. 2011;13:402–13.

    PubMed  Google Scholar 

  330. Khazin V, Kaufman Y, Zabeeda D, et al. Milrinone and nitric oxide: combined effect on pulmonary artery pressures after cardiopulmonary bypass in children. J Cardiothorac Vasc Anesth. 2004;18:156–9.

    CAS  PubMed  Google Scholar 

  331. Checchia PA, Bronicki RA, Goldstein B. Review of inhaled nitric oxide in the pediatric cardiac surgery setting. Pediatr Cardiol. 2012;33:493–505.

    PubMed  Google Scholar 

  332. Murphy TW, Smith JH, Ranger MR, Haynes SR. General anesthesia for children with severe heart failure. Pediatr Cardiol. 2011;32:139–44.

    PubMed  Google Scholar 

  333. Suarez CR, Menendez CE, Griffin AJ, Ow EP, Walenga JM, Fareed J. Cyanotic congenital heart disease in children: hemostatic disorders and relevance of molecular markers of hemostasis. Semin Thromb Hemost. 1984;10:285–9.

    CAS  PubMed  Google Scholar 

  334. Tempe DK, Virmani S. Coagulation abnormalities in patients with cyanotic congenital heart disease. J Cardiothorac Vasc Anesth. 2002;16:752–65.

    PubMed  Google Scholar 

  335. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117:1436–48.

    PubMed  Google Scholar 

  336. Bancalari E, Jesse MJ, Gelband H, Garcia O. Lung mechanics in congenital heart disease with increased and decreased pulmonary blood flow. J Pediatr. 1977;90:192–5.

    CAS  PubMed  Google Scholar 

  337. Yau KI, Fang LJ, Wu MH. Lung mechanics in infants with left-to-right shunt congenital heart disease. Pediatr Pulmonol. 1996;21:42–7.

    CAS  PubMed  Google Scholar 

  338. Stayer SA, Diaz LK, East DL, et al. Changes in respiratory mechanics among infants undergoing heart surgery. Anesth Analg. 2004;98:49–55.

    PubMed  Google Scholar 

  339. Holtby H. Con: regional anesthesia is not an important component of the anesthetic technique for pediatric patients undergoing cardiac surgical procedures. J Cardiothorac Vasc Anesth. 2002;16:379–81.

    PubMed  Google Scholar 

  340. Rosen DA, Rosen KR, Hammer GB. Pro: regional anesthesia is an important component of the anesthetic technique for pediatric patients undergoing cardiac surgical procedures. J Cardiothorac Vasc Anesth. 2002;16:374–8.

    PubMed  Google Scholar 

  341. Bosenberg AT, Johr M, Wolf AR. Pro con debate: the use of regional vs systemic analgesia for neonatal surgery. Paediatr Anaesth. 2011;21:1247–58.

    PubMed  Google Scholar 

  342. Hammer GB, Golianu B. Opioid analgesia in neonates following cardiac surgery. Semin Cardiothorac Vasc Anesth. 2007;11:47–58.

    PubMed  Google Scholar 

  343. Golianu B, Hammer GB. Pain management for pediatric thoracic surgery. Curr Opin Anaesthesiol. 2005;18:13–21.

    PubMed  Google Scholar 

  344. Martin RD, Parisi F, Robinson TW, Bailey L. Anesthetic management of neonatal cardiac transplantation. J Cardiothorac Anesth. 1989;3:465–9.

    CAS  PubMed  Google Scholar 

  345. Blasco LM, Parameshwar J, Vuylsteke A. Anaesthesia for noncardiac surgery in the heart transplant recipient. Curr Opin Anaesthesiol. 2009;22:109–13.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanda C. Miller-Hance MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller-Hance, W.C., Gottlieb, E.A., Motta, P. (2015). Anesthesia for Cardiac Surgery in Neonates. In: Lerman, J. (eds) Neonatal Anesthesia. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6041-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6041-2_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6040-5

  • Online ISBN: 978-1-4419-6041-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics