Thoracoabdominal and General Surgery

Chapter

Abstract

Provision of anesthesia for thoracoabdominal surgery in the neonate presents a number of specific challenges to the anesthesiologist. Many neonates are born at term in good condition, with or without an antenatal diagnosis, but many others are born premature and/or of low birth weight with associated cardiac abnormalities, pulmonary hypertension, and/or complications relating to the specific surgical diagnosis. Many of the principles of neonatal surgery are discussed elsewhere—this chapter considers specific conditions that require thoracic or abdominal surgery in the neonatal period, and the anesthetic and surgical requirements for each. There are very few randomized controlled trials to guide management. Most management strategies are based on retrospective case reviews or expert opinion. The use of minimally invasive techniques is becoming increasingly common and these approaches are also discussed.

Keywords

Thoracoabdominal surgery Neonate Anesthesia Minimally invasive techniques 

References

  1. 1.
    Morray JP, Geiduschek JM, Ramamoorthy C, et al. Anesthesia-related cardiac arrest in children: initial findings of the Pediatric Perioperative Cardiac Arrest (POCA) Registry. Anesthesiology. 2000;93:6–14.PubMedGoogle Scholar
  2. 2.
    Flick RP, Sprung J, Harrison TE, et al. Perioperative cardiac arrests in children between 1988 and 2005 at a tertiary referral center: a study of 92,881 patients. Anesthesiology. 2007;106:226–37.PubMedGoogle Scholar
  3. 3.
    Van der Griend BJ, Lister NA, McKenzie IM, et al. Postoperative mortality in children after 101,885 at a tertiary hospital. Anesth Analg. 2011;112:1440–7.PubMedGoogle Scholar
  4. 4.
    Thomas J. Reducing the risk in neonatal anesthesia. Pediatr Anesth. 2014;24:106–13.Google Scholar
  5. 5.
    Arnold PD. Coagulation and the surgical neonate. Pediatr Anesth. 2013;24:89–97.Google Scholar
  6. 6.
    Kenton AB, Hegemier S, Smith EO, et al. Platelet transfusions in infants with necrotizing enterocolitis do not lower mortality but may increase morbidity. J Perinatol. 2005;25:173–7.PubMedGoogle Scholar
  7. 7.
    Gibsen BE, British Committee for Standards in Haematology, et al. Transfusion guidelines for neonates and older children. Br J Haematol. 2004;124:433–53.Google Scholar
  8. 8.
    Sloan S. Neonatal transfusions. Pediatr Anesth. 2011;21:25–30.Google Scholar
  9. 9.
    Haynes AB, Weiser TG, Berry WR, et al. A surgical safety checklist to reduce morbidity and mortality in a global population. N Engl J Med. 2009;372:491–9.Google Scholar
  10. 10.
    Robinson S, Gregory GA. Fentanyl-air-oxygen anesthesia for ligation of patent ductus arteriosus in preterm infants. Anesth Analg. 1981;60:331–4.PubMedGoogle Scholar
  11. 11.
    Lonnquist PA. Major abdominal surgery of the neonate: anaesthetic considerations. Best Pract Res Clin Anaesthesiol. 2004;18:321–42.Google Scholar
  12. 12.
    de Graaff JC, Bijker JB, Kappen TH, et al. Incidence of intraoperative hypoxemia in children in relation to age. Anesth Analg. 2013;117:169–75.PubMedGoogle Scholar
  13. 13.
    Weiss M, Gerber AC. Rapid sequence induction in children—it’s not a matter of time! Paediatr Anaesth. 2008;18:97–9.PubMedGoogle Scholar
  14. 14.
    Eich C, Timmermann A, Russo SG, et al. A controlled rapid-sequence induction technique for infants may reduce unsafe actions and stress. Acta Anaesthesiol Scand. 2009;53:1167–72.PubMedGoogle Scholar
  15. 15.
    Lerman J. On cricoid pressure: “May the force be with you”. Anesth Analg. 2009;109:1363–6.PubMedGoogle Scholar
  16. 16.
    Walker RWM, Ravi R, Haylett K. Effect of cricoid force on airway caliber in children: a bronchoscopic assessment. Br J Anaesth. 2010;104:71–4.PubMedGoogle Scholar
  17. 17.
    Oh J, Lim T, Chee Y, et al. Videographic analysis of glottic view with increasing cricoid pressure force. Ann Emerg Med. 2013;61:407–13.PubMedGoogle Scholar
  18. 18.
    Hillier SC, Scamberger MS. Transcutaneous and end-tidal carbon dioxide analysis: complimentary monitoring strategies. J Intensive Care Med. 2005;20:307–9.PubMedGoogle Scholar
  19. 19.
    Trevisanuto D, Giuliotto S, Cavallin F, et al. End-tidal carbon dioxide monitoring in very low birth weight infants: correlation and agreement with arterial carbon dioxide. Pediatr Pulmonol. 2012;47:367–72.PubMedGoogle Scholar
  20. 20.
    Tingay DG, Mun KS, Perkins EJ. End tidal carbon dioxide is as reliable as transcutaneous monitoring in ventilated postsurgical neonates. Arch Dis Child Fetal Neonatal Ed. 2013;98:F161–4.PubMedGoogle Scholar
  21. 21.
    Singh BS, Gilbert U, Singh S, et al. Sidestream microstream end tidal carbon dioxide measurements and blood gas correlations in neonatal intensive care unit. Pediatr Pulmonol. 2013;48:250–6.PubMedGoogle Scholar
  22. 22.
    Freer Y, Lyon A. Temperature monitoring and control in the newborn baby. Paediatr Child Health. 2011;22:127–30.Google Scholar
  23. 23.
    Witt L, Dennhardt N, Eich C, et al. Prevention of intraoperative hypothermia in neonates and infants: results of a prospective multicenter observational study with a new forced-air warming system with increased warm air flow. Pediatr Anesth. 2013;23:469–74.Google Scholar
  24. 24.
    Murat I, Humblot A, Girault L, Piana F. Neonatal fluid management. Best Pract Res Clin Anaesthesiol. 2010;24:365–74.PubMedGoogle Scholar
  25. 25.
    O’Brien F, Walker IA. Fluid homeostasis in the neonate. Pediatr Anesth. 2014;24:49–59.Google Scholar
  26. 26.
    Apfelbaum JL, Caplan RA, Connis RT, et al. Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of aspiration: application to healthy patients undergoing elective procedures. Anesthesiology. 2011;114:495–511.Google Scholar
  27. 27.
    Sumpelmann R, Kretz F-J, Luntzer R, et al. Hydroxyethyl starch 130/0.42/6:1 for perioperative volume replacement in 1130 children: results of an European prospective multicenter observational postauthorization safety study (PASS). Paediatr Anaesth. 2012;22:371–8.PubMedGoogle Scholar
  28. 28.
    Hall NJ, Stanton MP, Kitteringham LJ, et al. Scope and feasibility of operating on the neonatal intensive care unit: 310 cases in 10 years. Pediatr Surg Int. 2012;28:1001–5.PubMedGoogle Scholar
  29. 29.
    Davidson AJ. Neurotoxicity and the need for anesthesia in the newborn. Does the Emperor have no clothes? Anesthesiol. 2012;116:507–9.Google Scholar
  30. 30.
    Hall NJ, Pacilli M, Eaton S, et al. Recovery after open versus laparoscopic pyloromyotomy for pyloric stenosis: a double blind multicentre randomised controlled trial. Lancet. 2009;373:390–8.PubMedGoogle Scholar
  31. 31.
    Sinha CK, Paramalingam S, Patel S, et al. Feasibility of complex minimally invasive surgery in neonates. Pediatr Surg Int. 2009;25:217–21.PubMedGoogle Scholar
  32. 32.
    Carrington EV, Hall NJ, Pacilli M, et al. Cost-effectiveness of laparoscopic versus open pyloromyotomy. J Surg Res. 2012;179:315–20.Google Scholar
  33. 33.
    Dingemann J, Ure BM. Systematic review of level 1 evidence for laparoscopic pediatric surgery: do our procedures comply with the requirements of evidence-based medicine?? Eur J Pediatr Surg. 2013;23:474–9.PubMedGoogle Scholar
  34. 34.
    Rothenberg SS. Thoracoscopic repair of esophageal atresia and tracheo-esophageal fistula in neonates: evolution of a technique. J Laparoendosc Adv Surg Tech A. 2012;22:195–9.PubMedGoogle Scholar
  35. 35.
    Holcomb GW, Rothenberg SS, Klaas MA. Thoracoscopic repair of esophageal atresia and tracheoesophageal fistula. A multi institutional analysis. Ann Surg. 2005;242:422–30.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Chan IH, Lau CT, Chung PH, et al. Laparoscopic inguinal hernia repair in premature neonates: is it safe? Pediatr Surg Int. 2013;29:327–30.PubMedGoogle Scholar
  37. 37.
    Olsen M, Avery N, Khurana S, et al. Pneumoperitoneum for neonatal laparoscopy: how safe is it? Pediatr Anesth. 2013;23:457–9.Google Scholar
  38. 38.
    Nasr A, Bass J. Thoracoscopic vs open resection of congenital lung lesions: a meta-analysis. J Pediatr Surg. 2012;47:857–61.PubMedGoogle Scholar
  39. 39.
    Lerman J, Kondo Y, Suzuki Y, et al. Chapter 27: General abdominal and urologic surgery. In: Coté CJ, Lerman J, Anderson B, editors. A practice of anesthesia for infants and children. Philadelphia, PA: Elsevier; 2012.Google Scholar
  40. 40.
    Groenewald CB, Latham GJ. An unexpected cause of cardiac arrest during laparoscopy in an infant with supravalvar aortic stenosis. Pediatr Anesth. 2013;23:91–3.Google Scholar
  41. 41.
    Gillory LA, Megison ML, Harmon CM, et al. Laparoscopic surgery in children with congenital heart disease. J Pediatr Surg. 2012;47:1084–8.PubMedGoogle Scholar
  42. 42.
    Slater B, Rangel S, Ramamoorthy C, et al. Outcomes after laparoscopic surgery in neonates with hypoplastic heart left heart syndrome. J Pediatr Surg. 2007;42:1118–21.PubMedGoogle Scholar
  43. 43.
    Pacilli M, Pierro A, Kinglsey C, et al. Absorption of carbon dioxide during laparoscopy in children measured using a novel mass spectrometric technique. Br J Anaesth. 2006;97:215–9.PubMedGoogle Scholar
  44. 44.
    Bliss D, Matar M, Krishnaswami S. Should intraoperative hypercapnea or hypercarbia raise concern in neonates undergoing thoracoscopic repair of diaphragmatic hernia of Bochdalek? J Laparoendosc Adv Surg Tech A. 2009;19:s55–8.PubMedGoogle Scholar
  45. 45.
    Bishay M, Giacomello L, Retrosi G, et al. Decreased cerebral oxygen saturation during thoracoscopic repair of congenital diaphragmatic hernia and esophageal atresia in infants. J Pediatr Surg. 2001;46:47–51.Google Scholar
  46. 46.
    McHoney M, Corizia L, Eaton S, et al. Carbon dioxide elimination during laparoscopy in children is age dependent. J Pediatr Surg. 2003;38:105–10.PubMedGoogle Scholar
  47. 47.
    Parelkar SV, Oak SN, Bachani MK, et al. Minimal access surgery in newborns and small infants; five years experience. J Minim Access Surg. 2013;9:19–24.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Kalfa N, Allal H, Raux O, et al. Tolerance of laparoscopy and thoracoscopy in neonates. Pediatrics. 2005;116:e785–91.PubMedGoogle Scholar
  49. 49.
    Ure BM, Suempelmann R, Metzelder M, et al. Physiological responses to endoscopic surgery in children. Semin Pediatr Surg. 2007;16:217–23.PubMedGoogle Scholar
  50. 50.
    Li LW, Zhang W, Ai YQ, et al. Influence of laparoscopic carbon dioxide pneumoperitoneum on neonate circulation and respiration. J Int Med Res. 2013;41:889–94.PubMedGoogle Scholar
  51. 51.
    McHoney M, Mackinlay G, Munro F, et al. Effect of patient weight and anesthetic technique on CO2 excretion during thoracoscopy in children assessed by end-tidal CO2. J Laparoendosc Adv Surg Tech A. 2008;18:147–51.PubMedGoogle Scholar
  52. 52.
    Kalfa N, Alla H, Raux O, et al. Multicentric assessment of the safety of neonatal videosurgery. Surg Endosc. 2007;21:303–8.PubMedGoogle Scholar
  53. 53.
    Kuebler JF, Ure BM. Minimally invasive surgery in the neonate. Semin Fetal Neonatal Med. 2011;16:151–6.PubMedGoogle Scholar
  54. 54.
    Tobias JD. Anesthesia for neonatal thoracic surgery. Best Pract Res Clin Anaesthesiol. 2004;18:303–20.PubMedGoogle Scholar
  55. 55.
    Hammer GB. Chapter 13: Anesthesia for thoracic surgery. In: Coté CJ, Lerman J, Anderson B, editors. A practice of anesthesia for infants and children. Philadelphia, PA: Elsevier; 2012.Google Scholar
  56. 56.
    Choudhry DK. Single-lung ventilation in pediatric anesthesia. Anesthesiol Clin North America. 2005;23:693–708.PubMedGoogle Scholar
  57. 57.
    Langston C. New concepts in the pathology of congenital lung malformations. Semin Pediatr Surg. 2003;12:17–37.PubMedGoogle Scholar
  58. 58.
    Guidry C, McGahren ED. Pediatric Chest 1. Developmental and physiologic conditions for the surgeon. Surg Clin N Am. 2012;92:615–43.PubMedGoogle Scholar
  59. 59.
    Adzick NS, Flake AW, Crombleholme TM. Management of congenital lung lesions. Semin Pediatr Surg. 2003;12:10–6.PubMedGoogle Scholar
  60. 60.
    Raychaudhuri P, Pasupati A, James A, et al. Prospective study of antenatally diagnosed congenital cystic adenomatoid malformations. Pediatr Surg Int. 2011;27:1159–64.PubMedGoogle Scholar
  61. 61.
    Kotecha S, Barbato A, Bush A, et al. Antenatal and postnatal management of congenital cystic adenomatoid malformation. Paediatr Respir Rev. 2012;13:162–70.PubMedGoogle Scholar
  62. 62.
    Yong PJ, Von Dadelszen P, Carpara D, et al. Prediction of pediatric outcome after prenatal diagnosis and expectant antenatal management of congenital cystic adenomatoid malformation. Fetal Diagn Ther. 2012;31:94–102.PubMedGoogle Scholar
  63. 63.
    Davenport M, Eber E. Long term respiratory outcomes of congenital thoracic malformation. Semin Fetal Neonatal Med. 2012;17:99–104.PubMedGoogle Scholar
  64. 64.
    Stocker JT, Madewell JE, Drake RM. Congenital cystic adenomatoid malformation of the lung. Classification and morphologic spectrum. Hum Pathol. 1977;8:155–71.PubMedGoogle Scholar
  65. 65.
    Stocker JT. Congenital pulmonary airway malformation-a new name for and an expanded classification of congenital cystic adenomatoid malformation of the lung. Histopathology. 2002;41 Suppl 2:424–58.Google Scholar
  66. 66.
    Fitzgerald DA. Congenital cyst adenomatoid malformations: resect some and observe all? Pediatr Respir Rev. 2007;8:67–76.Google Scholar
  67. 67.
    Khosa JK, Leong SL, Borzi PA. Congenital cystic adenomatoid malformation of the lung: indications and timing of surgery. Pediatr Surg Int. 2004;20:505–8.PubMedGoogle Scholar
  68. 68.
    Davenport M, Cacciaguerra S, Patel S, et al. Current outcome of antenatally diagnosed cystic lung disease. J Pediatr Surg. 2004;39:549–56.PubMedGoogle Scholar
  69. 69.
    Waszak P, Claris O, Lapillonne A, et al. Cystic adenomatoid malformation of the lung: neonatal management of 21 cases. Pediatr Surg Int. 1999;15:326–31.PubMedGoogle Scholar
  70. 70.
    Azizkhan RG, Crombleholme TM. Congenital cystic lung disease: contemporary antenatal and postnatal management. Pediatr Surg Int. 2008;24:643–57.PubMedGoogle Scholar
  71. 71.
    Colon N, Schlegel C, Pietsch J, et al. Congenital lung anomalies: can we postpone resection? J Pediatr Surg. 2012;47:87–92.PubMedGoogle Scholar
  72. 72.
    Peters RT, Burge DM, Marven SS. Congenital lung malformations: an ongoing controversy. Ann R Coll Surg Engl. 2013;95:144–7.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Delacourt C, Hadchouel A, Dunlop NK. Shall all congenital cystic lung malformations be removed? The case in favour. Paediatr Respir Rev. 2013;14:169–70.PubMedGoogle Scholar
  74. 74.
    Kotecha S. Should asymptomatic congenital cystic adenomatous malformations be removed? The case against. Paediatr Respir Rev. 2013;14:171–2.PubMedGoogle Scholar
  75. 75.
    Guruswamy V, Roberts S, Arnold P, et al. Anaesthetic management of a neonate with congenital cyst adenoid malformation. Br J Anaesth. 2005;95:240–2.PubMedGoogle Scholar
  76. 76.
    Nishimoto C, Inomata S, Kihara S, et al. Anesthetic management of four pediatric patients with CCAM for pulmonary lobectomy. Masui. 2002;51:162–5.PubMedGoogle Scholar
  77. 77.
    Baud D, Windrim R, Kachura JR, et al. Minimally invasive fetal therapy for hydropic lung masses: three different approaches and review of the literature. Ultrasound Obstet Gynecol. 2013;42:440–8.PubMedGoogle Scholar
  78. 78.
    Krivchenya DU, Rudenko EO, Dubrovin AG. Congenital emphysema in children: segmental lung resection as an alternative to lobectomy. J Pediatr Surg. 2013;48:309–14.PubMedGoogle Scholar
  79. 79.
    Iodice F, Harban F, Walker I. Anesthetic management of a patient with bilateral congenital lobar emphysema. Pediatr Anesth. 2008;18:340–1.Google Scholar
  80. 80.
    Arora MK, Karamchandani K, Bakhta P, et al. Combination of inhalational, intravenous, and local anesthesia for intubation in neonates with congenital lobar emphysema. Pediatr Anesth. 2006;16:997–1003.Google Scholar
  81. 81.
    Goyal A, Jones MO, Couriel JM, et al. Oesophageal atresia and tracheo-oesophageal fistula. Arch Dis Child Fetal Neonatal Ed. 2006;91:F381–4.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Knottenberlt G, Skinner A, Seefelder C. Tracheo-oesophageal fistula (TOF) and oesophageal atresia (OA). Best Pract Res Clin Anaesthesiol. 2010;24:387–401.Google Scholar
  83. 83.
    Spitz L. Oesophageal atresia. Orphanet J Rare Dis. 2007;2:24.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Jacobs IJ, Que J. Genetic and cellular mechanisms of the formation of esophageal atresia and tracheoesophageal fistula. Dis Esophagus. 2013;26:356–8.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Holzki J. Bronchoscopic findings and treatment in congenital tracheo-oesophageal fistula. Pediatr Anesth. 1992;2:297–303.Google Scholar
  86. 86.
    Passi Y, Sampathi V, Pierre J, et al. Esophageal atresia with double tracheoesophageal fistula. Anesthesiology. 2013;118:1207.PubMedGoogle Scholar
  87. 87.
    Diaz LK, Akpek EA, Radhika D, et al. Tracheoesophageal fistula and associated congenital heart disease: implications for anesthetic management and survival. Pediatr Anesth. 2005;15:862–9.Google Scholar
  88. 88.
    Stringer MD, McKenna K, Goldstein RB, et al. Prenatal diagnosis of esophageal atresia. J Pediatr Surg. 1995;30:1258–63.PubMedGoogle Scholar
  89. 89.
    Okamoto T, Takamizawa S, Hiroshi A. Esophageal atresia: prognostic classification revisited. Surgery. 2009;145:675–81.PubMedGoogle Scholar
  90. 90.
    La Placa S, Giuffre M, Gangemi A, et al. Esophageal atresia in newborns: a wide spectrum from the isolated forms to a full VACTERL phenotype? Ital J Pediatr. 2013;39:45.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Babu R, Pierro A, Spitz L, et al. The management of oesophageal atresia in neonates with right-sided aortic arch. J Pediatr Surg. 2000;35:56–8.PubMedGoogle Scholar
  92. 92.
    Solomon BD. VACTERL/VATER Association. Orphanet J Rare Dis. 2011;6:56.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Solomon BD, Baker LA, Bear KA, et al. An approach to the identification of anomalies and etiologies in neonates with identified or suspected VACTERL (vertebral Defects, anal atresia, tracheo-esophageal fistula with esophageal atresia, cardiac anomalies, renal anomalies, and limb anomalies) Association. J Pediatr. 2014;164:451–7.e1.PubMedCentralPubMedGoogle Scholar
  94. 94.
    De Jong EM, Felix JF, Deurloo JA, et al. Non-VACTERL-type anomalies are frequent in patients with esophageal atresia/tracheo-esophageal fistula and full or partial VACTERL association. Birth Defects Res A Clin Mol Teratol. 2008;82:92–7.PubMedGoogle Scholar
  95. 95.
    Lopez PJ, Keys C, Pierro A, et al. Oesophageal atresia: improved outcome in high-risk groups? J Pediatr Surg. 2006;41:331–4.PubMedGoogle Scholar
  96. 96.
    Alabbad SI, Shaw K, Puligandla PS, et al. The pitfalls of endotracheal intubation beyond the fistula in babies with type C esophageal atresia. Semin Pediatr Surg. 2009;18:116–8.PubMedGoogle Scholar
  97. 97.
    Ni Y, Yao Y, Liang P. Simple strategy of anesthesia for the neonate with tracheoesophageal fistula: a case report. Int J Clin Exp Med. 2014;7(1):327–8.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Deanovic D, Gerber A, Dodge-Khatatami A, et al. Tracheoscopy assisted repair of tracheo-esophageal fistula (TARTEF): a 10-year experience. Pediatr Anesth. 2007;17:557–62.Google Scholar
  99. 99.
    Huang J, Tao J, Chen K, et al. Thoracoscopic repair of oesophageal atresia: experience of 33 patients from two tertiary referral centres. J Pediatr Surg. 2012;47:2224–7.PubMedGoogle Scholar
  100. 100.
    Rothenberg SS. Thoracoscopic repair of esophageal atresia and tracheoesophageal fistula in neonates, first decade’s experience. Dis Esophagus. 2013;26:359–64.PubMedGoogle Scholar
  101. 101.
    Bishay M, Giacomello L, Retrosi G, et al. Hypercapnia and acidosis during open and thoracoscopic repair of congenital diaphragmatic hernia and esophageal atresia: results of a pilot randomized controlled trial. Ann Surg. 2013;258:895–900.PubMedGoogle Scholar
  102. 102.
    McKinnon G. Esophageal atresia surgery in the 21st century. Semin Pediatr Surg. 2009;18:20–2.Google Scholar
  103. 103.
    Delacourt C, Hadchouel A, Toelen J, et al. Long term respiratory outcomes of congenital diaphragmatic hernia, esophageal atresia, and cardiovascular anomalies. Semin Fetal Neonatal med. 2012;17:105–11.PubMedGoogle Scholar
  104. 104.
    Kovesi T. Long-term respiratory complications of congenital esophageal atresia with or without tracheoesophageal fistula: an update. Dis Esophagus. 2013;26:413–6.PubMedGoogle Scholar
  105. 105.
    Caplan A. Psychological impact of esophageal atresia: review of the research and clinical evidence. Dis Esophagus. 2013;26:392–400.PubMedGoogle Scholar
  106. 106.
    Andropoulos DB, Rowe RW, Betts JM. Anaesthetic and surgical airway management during tracheo-oesophageal fistula repair. Pediatr Anesth. 1998;8:313–9.Google Scholar
  107. 107.
    Knottenbelt G, Costi D, Stephens P, et al. An audit of anesthetic management and complications of tracheo-esophageal fistula and esophageal atresia repair. Pediatr Anesth. 2012;22:268–74.Google Scholar
  108. 108.
    Krosnar S, Baxter A. Thoracoscopic repair of esophageal atresia with tracheoesophageal fistula: anesthetic and intensive care management of a series of eight neonates. Pediatr Anesth. 2005;15:541–6.Google Scholar
  109. 109.
    Broemling N, Campbell F. Anaesthetic management of congenital tracheoesophageal fistula. Pediatr Anesth. 2011;21:1092–9.Google Scholar
  110. 110.
    Haroon J, Chamberlain RS. An evidence-based review of the current treatment of congenital diaphragmatic hernia. Clin Pediagtr (Phila). 2013;52:115–24.Google Scholar
  111. 111.
    Tovar JA. Congenital diaphragmatic hernia. Orphanet J Rare Dis. 2012;7:1.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Bosenberg A, Brown RA. Management of congenital diaphragmatic hernia. Curr Opin Anaesthesiol. 2008;21:323–31.PubMedGoogle Scholar
  113. 113.
    Seydel B, Detry O. Morgagni’s hernia. NEJM. 2010;362:e61.PubMedGoogle Scholar
  114. 114.
    Samangaya RA, Choudhri S, Murphy F, et al. Outcomes of congenital diaphragmatic hernia: a 12-year experience. Prenat Diagn. 2012;32:523–9.PubMedGoogle Scholar
  115. 115.
    Veenma DCM, de Klein A, Tibboel D. Developmental and genetic aspects of congenital diaphragmatic hernia. Pediatr Pulmonol. 2012;47:534–5.PubMedGoogle Scholar
  116. 116.
    Garne E, Haeusler M, Barisic I, et al. Congenital diaphragmatic hernia: evaluation of prenatal diagnosis in 20 European regions. Ultrasound Obstet Gynecol. 2002;19:329–33.PubMedGoogle Scholar
  117. 117.
    The Congenital Diaphragmatic Hernia Study Group. Defect size determines survival in infants with congenital diaphragmatic hernia. Pediatrics. 2007;120:e651–7.Google Scholar
  118. 118.
    Hedrick HL, Danzer E, Merchant A. Liver position and lung-to-head ratio for prediction of extracorporeal membrane oxygenation and survival in isolated left congenital diaphragmatic hernia. Am J Obstet Gynecol. 2007;197:422.e1–4.Google Scholar
  119. 119.
    Suda K, Bigras JL, Bohn D, et al. Echocardiographic predictors of outcome in newborns with congenital diaphragmatic hernia. Pediatrics. 2000;105:1106.PubMedGoogle Scholar
  120. 120.
    Garriboli M, Duess JW, Ruttenstock E, et al. Trends in the treatment and outcome of congenital diaphragmatic hernia over the last decade. Pediatr Surg Int. 2012;28:1177–81.PubMedGoogle Scholar
  121. 121.
    Chiu PPL, Ijsselstijn H. Morbidity and long term follow-up in CDH patients. Eur J Pediatr Surg. 2012;22:384–92.PubMedGoogle Scholar
  122. 122.
    Congenital Diaphragmatic Hernia Study Group, Morini F, Valfre L, Capolupo I, et al. Congenital diaphragmatic hernia: defect size correlates with developmental defect. J Pediatr Surg. 2013;48:1177–82.Google Scholar
  123. 123.
    Takahashi S, Sago H, Kanamori Y, et al. Prognostic factors of congenital diaphragmatic hernia accompanied by cardiovascular malformation. Pediatr Int. 2013;55:492–7.PubMedGoogle Scholar
  124. 124.
    Lally KP, Lasky RE, Lally PA, et al. Standardized reporting for congenital diaphragmatic hernia—an international consensus. J Pediatr Surg. 2013;48:2408–15.PubMedGoogle Scholar
  125. 125.
    Harrison MR, Sydorak RM, Farrell JA, et al. Fetoscopic temporary tracheal occlusion for congenital diaphragmatic hernia: prelude to a randomized, controlled trial. J Pediatr Surg. 2003;38:1012–20.PubMedGoogle Scholar
  126. 126.
    Jani JC, Nicolaides KH, Gratacos E, et al. Severe diaphragmatic hernia treated with endoscopic tracheal occlusion. Ultrasound Obstet Gynecol. 2009;34:304–10.PubMedGoogle Scholar
  127. 127.
    Speggiorin S, Fierens A, McHugh K, et al. Bronchomegaly as a complication of fetal endoscopic tracheal occlusion. A caution and a possible solution. J Pediatr Surg. 2011;46:e1–3.PubMedGoogle Scholar
  128. 128.
    Ruano R, Yoshisaki CT, Da Silva MM, et al. A randomized controlled trial of fetal endoscopic tracheal occlusion versus postnatal management of severe isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol. 2012;39:20–7.PubMedGoogle Scholar
  129. 129.
    Boloker J, Bateman DA, Wung JT, et al. Congenital diaphragmatic hernia in 120 infants treated consecutively with permissive hypercapnea/spontaneous respiration/elective repair. J Pediatr Surg. 2002;37:357–66.PubMedGoogle Scholar
  130. 130.
    Logan JW, Rice HE, Goldberg RN, Cotten CM. Congenital diaphragmatic hernia: a systematic review and summary of best-evidence practice strategies. J Perinatol. 2007;27:535–49.PubMedGoogle Scholar
  131. 131.
    Van den Hout L, Tinbboel D, Vifhuize S, et al. The VICI trial: high frequency oscillation versus conventional mechanical ventilation in newborns with congenital diaphragmatic hernia: an international multicentre randomized controlled trial. BMC Pediatr. 2011;11:98.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Bialkowski A, Moenkemeyer F, Patel N. Intravenous sildenafil in the management of pulmonary hypertension associated with congenital diaphragmatic hernia. Eur J Pediatr Surg. 2013 Oct 25. [Epub ahead of print].Google Scholar
  133. 133.
    Vijfhuize S, Schaible T, Kraemer U, et al. Management of pulmonary hypertension in neonates with congenital diaphragmatic hernia. Eur J Pediatr Surg. 2012;22:374–83.PubMedGoogle Scholar
  134. 134.
    Beres AL, Puligandla PS, Brindle ME, et al. Stability prior to surgery in congenital diaphragmatic hernia: is it necessary? J Pediatr Surg. 2013;48:919–23.PubMedGoogle Scholar
  135. 135.
    Morini F, Bagolan P. Surgical techniques in diaphragmatic hernia. Eur J Pediatr Surg. 2012;22:355–63.PubMedGoogle Scholar
  136. 136.
    Congenital diaphragmatic hernia group. Minimally invasive repair of congenital diaphragmatic hernia. J Pediatr Surg. 2011;46:11158–64.Google Scholar
  137. 137.
    Ellinas H, Seefelder C. Congenital thoracoscopic repair in neonates: is thoracoscopy feasible? Pediatr Anesth. 2010;20:967–8.Google Scholar
  138. 138.
    Peevy KJ, Speed FA, Hoff CJ. Epidemiology of inguinal hernia in preterm neonates. Pediatrics. 1986;77:246–7.PubMedGoogle Scholar
  139. 139.
    Choi W, Hall NJ, Garriboldi M, et al. Outcomes following laparoscopic inguinal hernia repair in infants compared with older children. Pediatr Surg Int. 2012;28:1165–9. doi: 10.1007/s00383-012-3188-1.PubMedGoogle Scholar
  140. 140.
    Pennant JH. Anesthesia for laparoscopy in the pediatric patient. Anesthesiol Clin North America. 2001;19:69–88.PubMedGoogle Scholar
  141. 141.
    Lee SL, Gleason JM, Sydorak RM. A critical review of premature infants with inguinal hernias: optimal timing of repair, incarceration risk, and postoperative apnea. J Pediatr Surg. 2011;46:217–20.PubMedGoogle Scholar
  142. 142.
    Cote CJ, Zaslavsky A, Downes JJ, et al. Postoperative apnea in former preterm infants after inguinal herniorrhaphy. A combined analysis. Anesthesiology. 1995;82:809–22.PubMedGoogle Scholar
  143. 143.
    Lacrosse D, Pirotte T, Veyckmans F. Caudal block and light sevoflurane mask anesthesia in high-risk infants: an audit of 98 cases. Ann Fr Anesth Reanim. 2012;31:29–33.PubMedGoogle Scholar
  144. 144.
    Walther-Larsen S, Rasmussen LS. The former preterm infant and risk of postoperative apnoea: recommendations for management. Acta Anaesthesiol Scand. 2006;50:888–93.PubMedGoogle Scholar
  145. 145.
    Sale SM, Read JA, Stoddart PA, Wolf AR. Prospective comparison of sevoflurane and desflurane in formerly premature infants undergoing inguinal herniotomy. Br J Anaesth. 2006;96:774–8.PubMedGoogle Scholar
  146. 146.
    Craven PD, Badwani N, Henderson-Smart D-J, O’Brien M. Regional (spinal, epidural, caudal) versus general anesthesia in preterm infants undergoing inguinal herniorrhaphy in early infancy (review). Cochrane Database Syst Rev. 2003;3, CD003669.PubMedGoogle Scholar
  147. 147.
    Welborn LG, Hannallah RS, Fink R, et al. High-dose caffeine suppresses postoperative apnea in former preterm infants. Anesthesiology. 1989;71:347–9.PubMedGoogle Scholar
  148. 148.
    Davidson A, McCann ME, Morton N, et al. Protocol 09PRT/9078: a multi-site randomised controlled trial to compare regional and general anaesthesia for effects on neurodevelopmental outcome and apnoea in infants: the GAS study (ACTRN12606000441516, NCT00756600). The Lancet protocol reviews. http://www.thelancet.com/protocol-reviews/09PRT9078. Accessed 6 Dec 2012.
  149. 149.
    Modarressi T. The question of an infectious etiology or contribution to the pathogenesis of infantile hypertrophic pyloric stenosis. J Pediatr Gastroenterol Nutr. 2014;58:546–8. doi: 10.1097/MPG.PubMedGoogle Scholar
  150. 150.
    Georgoula C, Gardiner M. Pyloric stenosis a 100 years after Ramstedt. Arch Dis Child. 2012;97:741–5.PubMedGoogle Scholar
  151. 151.
    McAteer JP, Ledbetter DJ, Goldin AB. Role of bottle feeding in the etiology of hypertrophic pyloric stenosis. JAMA Pediatr. 2013;167:1143–9.PubMedGoogle Scholar
  152. 152.
    Krogh C, Biggar RJ, Fischer TK, et al. Bottle-feeding and the risk of pyloric stenosis. Pediatrics. 2012;130:e943–9.PubMedCentralPubMedGoogle Scholar
  153. 153.
    Aspelind G, Langer JC. Current management of hypertrophic pyloric stenosis. Semin Pediatr Surg. 2007;16:27–33.Google Scholar
  154. 154.
    Glatstein M, Carbell G, Boddu SK, et al. The changing clinical presentation of hypertrophic pyloric stenosis: the experience of a large tertiary care pediatric hospital. Clin Pediatr. 2011;50:192–5.Google Scholar
  155. 155.
    Taylor ND, Cass DT, Holland AJ. Infantile hypertrophic pyloric stenosis: has anything changed? J Paediatr Child Health. 2013;49:33–7.PubMedGoogle Scholar
  156. 156.
    Tutay GJ, Capraro G, SPirko B, et al. Electrolyte profile of pediatric patients with hypertrophic pyloric stenosis. Pediatr Emerg Care. 2013;29:465–8.PubMedGoogle Scholar
  157. 157.
    Iqbal CW, Rivard DC, Mortellaro VE, et al. Evaluation of ultrasonographic parameters in the diagnosis of pyloric stenosis relative to patient age and size. J Pediatr Surg. 2012;47:1542–7.PubMedGoogle Scholar
  158. 158.
    Oomen MWN, Hoekstra LT, Bakx R, et al. Open versus laparoscopic pyloromyotomy for hypertrophic pyloric stenosis: a systematic review and meta-analysis focusing on major complications. Surg Endosc. 2012;26:2104–10.PubMedCentralPubMedGoogle Scholar
  159. 159.
    Turial S, Enders J, Schier F. Microlaparoscopic pyloromyotomy in children: initial experiences with a new technique. Surg Endosc. 2011;25:266–70.PubMedGoogle Scholar
  160. 160.
    Bissonnette B, Sullivan PJ. Pyloric stenosis. Can J Anaesth. 1991;38:668–76.PubMedGoogle Scholar
  161. 161.
    Stoddart PA, Brennan L, Hatch D-J, Bingham R. Postal survey of paediatric practice and training among consultant anaesthetists in the UK. Br J Anaesth. 1994;73:559–63.PubMedGoogle Scholar
  162. 162.
    Black SJ, Carson EM, Doughty A. How much and where: assessment of knowledge level of the application of cricoid pressure. J Emerg Nurs. 2012;38:370–4.PubMedGoogle Scholar
  163. 163.
    Landsman I. Cricoid pressure: indications and complications. Paediatr Anaesth. 2004;14:43–7.PubMedGoogle Scholar
  164. 164.
    Rapp HJ, Altenmueller CA, Waschke C. Neuromuscular recovery following rocuronium bromide single dose in infants. Pediatr Anesth. 2004;14:329–35.Google Scholar
  165. 165.
    Driessen JJ, Robertson EN, Booij LHDJ. Acceleromyography in neonates and small infants: baseline calibration and recovery of the responses after neuromuscular blockade with rocuronium. Eur J Anaesthesiol. 2005;22:11–5.PubMedGoogle Scholar
  166. 166.
    Hassid S, Nicaise C, Michel F, et al. Randomized controlled trial of sevoflurane for intubation in neonates. Pediatr Anesth. 2007;17:1053–8.Google Scholar
  167. 167.
    Davis PJ, Galinkin J, McGowan FX, et al. A randomized multicenter study of remifentanil compared with halothane in neonates and infants undergoing pyloromyotomy. 1. Emergence and recovery profiles. Anesth Analg. 2011;93:1380–6.Google Scholar
  168. 168.
    Breschan C, Jost R, Stettner H, et al. Ultrasound-guided rectus sheath block for pyloromyotomy in infants: a retrospective analysis of a case series. Pediatr Anesth. 2013;23:1199–204.Google Scholar
  169. 169.
    Willschke H, Machata AM, Rebhandl W, et al. Management of hypertrophic pylorus stenosis with ultrasound guided single shot epidural anaesthesia—a retrospective analysis of 20 cases. Paediatr Anaesth. 2011;21:110–5.PubMedGoogle Scholar
  170. 170.
    Ghazal E, Amin A, Wu A, et al. Impact of rocuronium vs succinylcholine neuromuscular blocking drug choice for laparoscopic pyloromyotomy: is there a difference in tine to transport to recovery? Pediatr Anesth. 2013;23:316–21.Google Scholar
  171. 171.
    Taylor RH, Lerman J. Minimum alveolar concentration of desflurane and hemodynamic responses in neonates, infants, and children. Anesthesiology. 1991;75:975–9.PubMedGoogle Scholar
  172. 172.
    Lerman J. Surgical and patient factors involved in postoperative nausea and vomiting. Br J Anaesth. 1992;69 Suppl 1:24S–32.PubMedGoogle Scholar
  173. 173.
    Hajivassiliou CA. Intestinal obstruction in neonatal/pediatric surgery. Semin Pediatr Surg. 2003;12:241–53.PubMedGoogle Scholar
  174. 174.
    Best KE, Tennant PW, Addor MC, et al. Epidemiology of small intestinal atresia in Europe: a register-based study. Arch Dis Child Fetal Neonatal Ed. 2012;97:F353–8.PubMedGoogle Scholar
  175. 175.
    Grosfeld JL, Ballantine TVN, Shoemaker R. Operative management of intestinal atresia and stenosis based on pathologic findings. J Pediatr Surg. 1979;14:368–75.PubMedGoogle Scholar
  176. 176.
    Vecchia LKD, Grosfeld JL, West KW, et al. Intestinal atresia and stenosis. A 25-year experience with 277 cases. Arch Surg. 1998;133:490–7.PubMedGoogle Scholar
  177. 177.
    Carlyle BE, Borowitz DS, Glick PL. A review of pathophysiology and management of fetuses and neonates with meconium ileus for the pediatric surgeon. J Pediatr Surg. 2012;47:772–81.PubMedGoogle Scholar
  178. 178.
    Kumar N, Curry I. Bile-stained vomiting in the infant: green is not good! Arch Dis Child Educ Pract Ed. 2008;93:84–6.PubMedGoogle Scholar
  179. 179.
    Hagendoorn J, Viera-Travassos D, van der Zee D. Laparoscopic treatment of intestinal malrotation in neonates and infants: retrospective study. Surg Endosc. 2001;25:217–20.Google Scholar
  180. 180.
    Hsiao M, Langer JC. Surgery for suspected rotation abnormality: selection of open vs laparoscopic surgery using a rational approach. J Pediatr Surg. 2012;47:904–10.PubMedGoogle Scholar
  181. 181.
    Kiely EM, Pierro A, Pierce C, Cross K, De Coppi P. Clot dissolution: a novel treatment of midgut volvulus. Pediatrics. 2012;129:e1601–4.PubMedGoogle Scholar
  182. 182.
    Kenny S, Tam PKH, Garcia-Barcelo M. Hirschsprung’s disease. Semin Pediatr Surg. 2010;19:194–200.PubMedGoogle Scholar
  183. 183.
    Saeed A, Barreto L, Neogii SG, et al. Identification of novel genes in Hirschsprung disease pathway using whole genome expression study. J Pediatr Surg. 2012;47:303–7.PubMedGoogle Scholar
  184. 184.
    Georgeson KE, Cohen RD, Hebra A, et al. Primary laparoscopic-assisted endorectal pull-through for Hirschsprung’s disease. A new gold standard. Ann Surg. 1999;229:678–83.PubMedCentralPubMedGoogle Scholar
  185. 185.
    Nah SA, De Coppi P, Kiely EM, et al. Duhamel pull-through for Hirschsprung’s disease: a comparison of open and laparoscopic techniques. J Pediatr Surg. 2012;47:308–12.PubMedGoogle Scholar
  186. 186.
    Holscheneider A, Hutson J, Pena A. Preliminary report on the international conference for the development of standards for the treatment of anorectal malformations. J Pediatr Surg. 2005;40:1521–6.Google Scholar
  187. 187.
    Levitt MA, Pena A. Anorectal malformations. Orphanet J Rare Dis. 2007;2:33.PubMedCentralPubMedGoogle Scholar
  188. 188.
    Rintala RJ. Congenital anorectal malformations: anything new? J Pediatr Gastroenterol Nutr. 2009;48:s79–82.PubMedGoogle Scholar
  189. 189.
    Berde CB. Convulsion associated with pediatric regional anesthesia. Anesth Analg. 1992;75:164–6.PubMedGoogle Scholar
  190. 190.
    Kart T, Christrup LL, Rasmussen M. Recommended use of morphine in neonates, infants and children based on a literature review: Part 1-Pharmacokinetcs. Pediatr Anaesth. 1997;7:5–11.Google Scholar
  191. 191.
    Hall RW, Kronsberg SS, Barton BA, et al. Morphine, hypotension, and adverse outcomes among preterm neonates: who’s to blame? Secondary results from the NEOPAIN trial. Pediatrics. 2005;115:1351–9.PubMedGoogle Scholar
  192. 192.
    Anand KJS, Anderson BJ, Holford NHG, et al. Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth. 2008;101:680–9.PubMedCentralPubMedGoogle Scholar
  193. 193.
    Mastrolacovo P. Risk factors for gastroschisis. BMJ. 2008;336:1386–7.Google Scholar
  194. 194.
    Gill SK, Broussard C, Devine O, et al. Association between maternal age and birth defects of unknown etiology—United States 1997-2007. Birth Defect Res A Clin Mol Teratol. 2012;94:1010–18.Google Scholar
  195. 195.
    Kirby RS, Marshall J, Tanner JP, et al. Prevalence and correlates of gastroschisis in 15 states, 1995-2005. Obstet Gynecol. 2013;122:275–81.PubMedGoogle Scholar
  196. 196.
    Kim K, Wang Y, Kirby RS, et al. Prevalence and trends of selected congenital malformations in New York state, 1983 to 2007. Birth Defects Res A Clin Mol Teratol. 2013;97:619–27.PubMedGoogle Scholar
  197. 197.
    Ghionzoli M, James CP, David AL, et al. Gastroschisis with intestinal atresia—predictive value of antenatal diagnosis and outcome of postnatal treatment. J Pediatr Surg. 2012;47:322–8.PubMedGoogle Scholar
  198. 198.
    Horton AL, Powell MS, Wolfe HM. Intrauterine growth patterns in fetal gastroschisis. Am J Perinatol. 2010;27:211–7.PubMedGoogle Scholar
  199. 199.
    Nasr A, Langer JC. Canadian paediatric surgery network. J Pediatr Surg. 2012;47:2022–5.PubMedGoogle Scholar
  200. 200.
    Grant NH, Dorling J, Thornton JG. Elective preterm birth for fetal gastroschisis. Cochrane Database Syst Rev. 2013 (6): CD009394.pub2.Google Scholar
  201. 201.
    Nasr A, Wayne C, Bass J, et al. Effect of delivery approach on outcomes in fetuses with gastroschisis. J Pediatr Surg. 2013;48:2251–5.PubMedGoogle Scholar
  202. 202.
    Ledbetter DJ. Congenital abdominal wall defects and reconstruction in pediatric surgery: gastroschisis and omphalocele. Surg Clin N Am. 2012;92:713–27.PubMedGoogle Scholar
  203. 203.
    Aljahdali A, Mohajerani N, Skarsgard ED, et al. Effect of timing of enteral feeding on outcome in gastroschisis. J Pediatr Surg. 2013;48:971–6.PubMedGoogle Scholar
  204. 204.
    Amin SC, Pappas C, Iyengar H, et al. Short bowel syndrome in the NICU. Clin Perinatol. 2013;40:53–68.PubMedGoogle Scholar
  205. 205.
    Choi WW, McBride CA, Bourle C, et al. Long-term review of sutureless ward reduction in neonates with gastroschisis in the neonatal unit. J Pediatr Surg. 2012;47:1516–20.PubMedGoogle Scholar
  206. 206.
    Pastor AC, Phillips JD, Fenton SJ, et al. Routine use of a SILASTIC spring-loaded silo for infants with gastroschisis: a multicenter randomized controlled trial. J Pediatr Surg. 2008;43:1807–12.PubMedGoogle Scholar
  207. 207.
    Mayhew JF, Mychaskiew G. Gastroschisis. Pediatr Anesth. 2009;19:54.Google Scholar
  208. 208.
    Lobo JD, Kim AC, Davis RP, et al. NO free ride? The hidden costs of delayed operative management using a spring-loaded silo for gastroschisis. J Pediatr Surg. 2010;45:1426–32.PubMedGoogle Scholar
  209. 209.
    Raghavan M, Montgomerie J. Anesthetic management of gastroschisis—a review of our practice over the past 5 years. Pediatr Anesth. 2008;18:1055–9.Google Scholar
  210. 210.
    Vegunta RK, Wallace LJ, Leonardi MR, et al. Perinatal management of gastroschisis: analysis of a newly established clinical pathway. J Pediatr Surg. 2005;40:528–34.PubMedGoogle Scholar
  211. 211.
    Yaster M, Schere TL, Stone MM, et al. Prediction of successful primary closure of congenital abdominal wall defects using intraoperative measurements. J Pediatr Surg. 1989;24:1217–20.PubMedGoogle Scholar
  212. 212.
    Puffinbarger NK, Taylor DV, Tuggle DW, et al. End-tidal carbon dioxide for monitoring primary closure of gastroschisis. J Pediatr Surg. 1996;31:280–2.PubMedGoogle Scholar
  213. 213.
    Mortellaro VE, St Peter SD, Fike FB, Islam S. Review of the evidence on the closure of abdominal wall defects. Pediatr Surg Int. 2011;27:391–7.PubMedGoogle Scholar
  214. 214.
    Siffel C, et al. Bladder exstrophy: an epidemiologic study from the International Clearinghouse for Birth Defects Surveillance and Research, and an overview of the literature. Am J Med Genet C Semin Med Genet. 2011;157C(4):321–32.PubMedGoogle Scholar
  215. 215.
    Purves T. Modern approaches in primary exstrophy closure. Semin Pediatr Surg. 2011;20:79–84.PubMedGoogle Scholar
  216. 216.
    Gearhart JP, Baird AD. The failed complete repair of bladder exstrophy: insights and outcomes. J Urol. 2005;174:1669–73.PubMedGoogle Scholar
  217. 217.
    Kost-Byerly S, Jackson EV, Yaster M, et al. Perioperative anesthetic and analgesic management of newborn bladder exstrophy repair. J Pediatr Urol. 2008;4:280–5.PubMedGoogle Scholar
  218. 218.
    Ansari MS, Gulia A, Srivastava A, Kapoor R. Risk factors for progression to end-stage renal disease in children with posterior urethral valves. J Pediatr Urol. 2010;6:261–4.PubMedGoogle Scholar
  219. 219.
    Morris RK, Kilby MD. Long-term renal and neurodevelopmental outcome in infants with LUTO, with and without fetal intervention. Early Hum Dev. 2011;87:607–10.PubMedGoogle Scholar
  220. 220.
    Davenport KP, Blanco FC, Sandler AD. Pediatric malignancies: neuroblastoma, Wilm’s tumor, hepatoblastoma, rhabdomyosarcoma, and sacrococcygeal teratoma. Surg Clin N Am. 2012;92:745–67.PubMedGoogle Scholar
  221. 221.
    Winderl LM, Silverman RK. Prenatal identification of a completely cystic internal sacrococcygeal teratoma (Type IV). Ultrasound Obstet Gynecol. 1997;9:425–8.PubMedGoogle Scholar
  222. 222.
    Shue E, Bolouri M, Jelin EB, et al. Tumor metrics and morphology predict poor prognosis in prenatally diagnosed sacrococcygeal teratoma: a 25-year experience at a single institution. J Pediatr Surg. 2013;48:12225–31.Google Scholar
  223. 223.
    Shalaby MS, O’Toole S, Driver C, et al. Urogenital anomalies in girls with sacrococcygeal teratoma: a commonly missed association. J Pediatr Surg. 2012;47:371–4.PubMedGoogle Scholar
  224. 224.
    Altman RP, Randolph JG, Lilly JR. Sacrococcygeal teratoma: American Academy of Pediatrics Surgical Section Survey 1973. J Pediatr Surg. 1974;9:389–98.PubMedGoogle Scholar
  225. 225.
    Ledrick H, Flake AW, Crombleholme TM, et al. Sacrococcygeal teratoma: prenatal assessment, fetal intervention, and outcome. J Pediatr Surg. 2004;39:430–8.Google Scholar
  226. 226.
    Lee MY, Won HS, Hyun MK, et al. Perinatal outcome of sacrococcygeal teratoma. Prenat Diagn. 2011;31:1217–21.PubMedGoogle Scholar
  227. 227.
    Van Mieghem T, Al-Ibrahim A, Deprest J, et al. Minimally invasive therapy for fetal sacrococcygeal teratomas: case series and systematic review of the literature. Ultrasound Obstet Gynecol. 2014;43:611–9. doi: 10.1002/uog.13315.PubMedGoogle Scholar
  228. 228.
    Kim J-W, Gwak M, Park J-Y, et al. Cardiac arrest during excision of a huge sacrococcygeal teratoma. A report of two cases. Korean J Anesthesiol. 2012;63:80–4.PubMedCentralPubMedGoogle Scholar
  229. 229.
    Davenport M. Biliary atresia: clinical aspects. Semin Pediatr Surg. 2012;21:175–84.PubMedGoogle Scholar
  230. 230.
    Jacob R. Anesthesia for biliary atresia and hepatectomy in paediatrics. Indian J Anesthesial. 2012;56:479–84.Google Scholar
  231. 231.
    Chan KW, Lee KH, Tsui SY, et al. Laparoscopic versus open Kasai portoenterostomy in infant with biliary atresia: a retrospective review on the 5-year native liver survival. Pediatr Surg Int. 2012;28:1109–13.PubMedGoogle Scholar
  232. 232.
    Yamataka A, Lane GJ, Cazares J. Laparoscopic surgery for biliary atresia and choledochal cyst. Semin Pediatr Surg. 2012;21:201–10.PubMedGoogle Scholar
  233. 233.
    Diao M, Li L, Cheng W. Initial experience of single-incision laparoscopic hepaticojejunostomy using conventional instruments for correctable biliary atresia. J Laparoendosc Adv Surg Tech A. 2012;22:615–20.PubMedGoogle Scholar
  234. 234.
    Oetzmann von Sochaczewski C, Petersen C, Ure BM, et al. Laparoscopic versus conventional Kasai portoenterostomy does not facilitate subsequent liver transplantation in infants with biliary atresia. J Laparoendosc Adv Surg Tech A. 2012;22:408–11.PubMedGoogle Scholar
  235. 235.
    Wong KK, Chung PH, Chan KL, et al. Should open Kasai portoenterostomy be performed for biliary atresia in the era of laparoscopy? Pediatr Surg Int. 2008;24:931–3.PubMedGoogle Scholar
  236. 236.
    Green DW, Howard ER, Davenport M. Anaesthesia, perioperative management and outcome of correction of extrahepatic biliary atresia in the infant: a review of 50 cases in the King’s College Hospital series. Pediatr Anaesth. 2000;10:581–9.Google Scholar
  237. 237.
    Kastenberg Z, Sylvester KG. The surgical management of necrotizing enterocolitis. Clin Perinatol. 2013;40:135–48.PubMedGoogle Scholar
  238. 238.
    Gordon PV, Swanson JR. Necrotizing enterocolitis is one disease with many origins and potential means of prevention. Pathophysiology. 2014;21:13–9. doi: 10.1016/j.pathophys.2013.11.015.PubMedGoogle Scholar
  239. 239.
    Wan-Huen P, Bateman D, Shapiro DM, Parravicini E. Packed red blood cell transfusion is an independent risk factor for necrotizing independent risk factor for necrotizing enterocolitis in premature infants. J Perinatol. 2013;33:786–90.PubMedGoogle Scholar
  240. 240.
    Kim JH. Necrotizing enterocolitis: the road to zero. Semin Fetal Neonatal Med. 2014;19:39–44.PubMedGoogle Scholar
  241. 241.
    Stewart CJ, Marrs ECL, Nelson A, et al. Development of the preterm gut microbiome in twins at risk of necrotizing enterocolitis and sepsis. PLoS One. 2013;8(8):e73465.PubMedCentralPubMedGoogle Scholar
  242. 242.
    Lee JS, Polin R. Treatment and prevention of necrotizing enterocolitis. Semin Neonatol. 2003;8:449–59.PubMedGoogle Scholar
  243. 243.
    Ng PC, Chan KYY, Poon TCW. Biomarkers for prediction and diagnosis of necrotizing enterocolitis. Clin Perinatol. 2013;40:149–59.PubMedGoogle Scholar
  244. 244.
    Ng PC. Biomarkers of necrotising enterocolitis. Semin Fetal Neonatal Med. 2014;19:33–8.PubMedGoogle Scholar
  245. 245.
    Thyoka M, de Coppi P, Eaton S, et al. Advanced necrotizing enterocolitis Part 1: mortality. Eur J Pediatr Surg. 2012;22:8–12.PubMedGoogle Scholar
  246. 246.
    Hull MA, Fisher JG, Gutierrez IM, et al. Mortality and management of surgical necrotizing enterocolitis in very low birth weight neonates: a prospective cohort study. J Am Coll Surg. 2014;218:1148–55.PubMedGoogle Scholar
  247. 247.
    Pierro A. The surgical management of necrotizing enterocolitis. Early Hum Dev. 2005;81:79–85.PubMedGoogle Scholar
  248. 248.
    Rees C, Pierro A, Eaton S. Neurodevelopmental outcomes of neonates with medically and surgically treated necrotizing enterocolitis. Arch Dis Child Fet Neonatal Ed. 2007;92:F193–8.Google Scholar
  249. 249.
    Huda S, Chaudhery S, Ibrahim H, et al. Neonatal necrotizing enterocolitis: clinical challenges, pathophysiology and management. Pathophysiology. 2014;21:3–12.PubMedGoogle Scholar
  250. 250.
    Patel RM, Denning PW. Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis. Clin Perinatol. 2013;40:11–25.PubMedCentralPubMedGoogle Scholar
  251. 251.
    Downward CD, Renaud E, St Peter SD, et al. Treatment of necrotizing enterocolitis: an American Pediatric Surgical Association Outcomes and Clinical Trials Committee systematic review. J Pediatr Surg. 2012;47:2111–22.Google Scholar
  252. 252.
    Wong MP, Droubatchevskaia N, Chipperfield KM, et al. Guidelines for frozen plasma transfusion. B C Med J. 2007;49:311–9.Google Scholar
  253. 253.
    Osborn DA, Lui K, Pussell P, et al. T and Tk antigen activation in necrotizing enterocolitis: manifestations, severity of illness, and effectiveness of testing. Arch Dis Child Fetal Neonatal Ed. 1999;80:F192–7.PubMedCentralPubMedGoogle Scholar
  254. 254.
    Hall N, Ong EGP, Ade-Ajayi N, et al. T cryptantigen activation is associated with advanced necrotizing enterocolitis. J Pediatr Surg. 2002;37:791–3.PubMedGoogle Scholar
  255. 255.
    Rao SC, Basani L, Simmer K, et al. Peritoneal drainage versus laparotomy as initial surgical treatment for perforated necrotizing enterocolitis or spontaneous intestinal perforation in preterm low birth weight infants. Cochrane Database Syst Rev. 2011: CD006182.Google Scholar
  256. 256.
    Leva E, Di Cesare A, Canazza L, et al. The role of laparoscopy in newborns affected by NEC. J Laparoendosc Adv Surg Tech A. 2010;20:187–9.PubMedGoogle Scholar
  257. 257.
    Pani N, Panda CK. Anaesthetic consideration for neonatal surgical emergencies. Indian J Anaesth. 2012;56:463–9.PubMedCentralPubMedGoogle Scholar
  258. 258.
    Saarenmaa E, Neuvonen PJ, Fellman V. Gestational age and birth weight effects on plasma clearance of fentanyl in newborn infants. J Pediatr. 2000;136:767–70.PubMedGoogle Scholar
  259. 259.
    Sammartino M, Garra R, Sbaraglia F, et al. Experience of remifentanil in extremely low-birth-weight babies undergoing laparotomy. Pediatr Neonatol. 2011;52:176–9.PubMedGoogle Scholar
  260. 260.
    Penido MG, Garra R, Sammartino M, et al. Remifentanil in neonatal intensive care and anaesthetic practice. Acta Paediatr. 2010;99:1454–63.PubMedGoogle Scholar
  261. 261.
    Welzing L, Evenfeld S, Dlugay V, et al. Remifentanil degradation in umbilical cord blood of preterm infants. Anesthesiology. 2011;114:570–7.PubMedGoogle Scholar
  262. 262.
    Cho SS, Rudloff I, Berger PJ, et al. Remifentanil ameliorates intestinal ischemia-reperfusion injury. BMC Gastroenterol. 2013;13:69.PubMedCentralPubMedGoogle Scholar
  263. 263.
    Cox DJ, Groves AM. Inotropes in preterm infants—evidence for and against. Acta Paediatr. 2012;101 Suppl 464:17–23.Google Scholar
  264. 264.
    Hall NJ, Eaton S, Peters MJ, et al. Mild controlled hypothermia in preterm neonates with advanced necrotizing enterocolitis. Pediatrics. 2010;125:e300–8.PubMedGoogle Scholar
  265. 265.
    Dalla Vechia LK, Grosfield JL, West KW, et al. Intestinal atresia: a 25 year experience with 277 cases. Arch Surg. 1998;133:490–7.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kate Cross
    • 1
  • Jonathan Smith
    • 2
  • Isabeau A. Walker
    • 2
  1. 1.Great Ormond Street Hospital NHS Foundation Trust, Institute of Child Health, Unversity College LondonLondonUK
  2. 2.Portex Department of Paediatric AnaesthesiaGreat Ormond Street Hospital NHS Foundation Trust, Institute of Child Health, University College LondonLondonUK

Personalised recommendations