Neuroendocrine Regulation

  • Vicente Barrios
  • Gabriel Ángel Martos-Moreno
  • Laura M. Frago
  • Julie A. Chowen
  • Jesús Argente
Part of the Springer Series on Epidemiology and Public Health book series (SSEH, volume 2)


Obesity is a major problem in developed countries and the development of an effective treatment is an important area of research. In order to reach this goal, we must first know how metabolism and appetite are controlled, both in the periphery, as well as in the central nervous system. Due to the increased interest in this area of research, our understanding of the neuroendocrine control of food intake and energy expenditure has increased dramatically in recent years. New neuropeptides have been identified and new metabolic roles of previously known neuropeptides and neurotransmissors have been demonstrated. This chapter will briefly describe the various brain areas involved in metabolic control, concentrating on the hypothalamus and the specific nuclei of this brain area most intimately involved in the control of appetite and metabolism. Special attention will be paid to the hypothalamic neuronal populations that produce neuropeptide Y (NPY)/agouti-related protein (AgRP) and proopiomelanortin (POMC)/cocaine- and amphetamine-regulated transcript (CART). These two neuronal populations are central to metabolic and have been the subject of much investigation.


Energy Homeostasis Paraventricular Nucleus Lateral Hypothalamus Arcuate Nucleus Nucleus Tractus Solitarius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahima, R.S. (2005). Central actions of adipocyte hormones. Trends in Endocrinology and Metabolism, 16, 307–313.PubMedGoogle Scholar
  2. Ahima, R.S. & Lazar, M.A. (2008). Adipokines and the peripheral and neural control of energy balance. Molecular Endocrinology, 22, 1023–1031.PubMedGoogle Scholar
  3. Ahima, R.S., Qi, Y., Singhal, N.S., Jackson, M.B., & Scherer, P.E. (2006). Brain adipocytokine action and metabolic regulation. Diabetes, 55, S145–S154.PubMedGoogle Scholar
  4. Air, E.L., Strowski, M.Z., Benoit, S.C., Conarello, S.L., Salituro, G.M., Guan, X.M., Liu, K., Woods, S.C., & Zhang, B.B. (2002). Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity. Nature Medicine, 8, 179–183.PubMedGoogle Scholar
  5. Anand, B.K., & Brobeck, J.R. (1951). Localization of feeding center in the hypothalamus of the rat. Proceedings of the Society for Experimental Biology and Medicine, 11, 323–324.Google Scholar
  6. Andersson, U., Filipsson, K., Abbott, C.R., Woods, A., Smith, K., Bloom, S.R., Carling D., & Small, C.J. (2004). AMP-activated protein kinase plays a role in the control of food intake. The Journal of Biological Chemistry, 279, 12005–12008.PubMedGoogle Scholar
  7. Antunes, T.T., Gagnon, A., Bell, A., & Sorisky, A. (2005). Thyroid-stimulating hormone stimulates interleukin-6 release from 3T3-L1 adipocytes through a cAMP-protein kinase A pathway. Obesity Research, 13, 2066–2071.PubMedGoogle Scholar
  8. Arch, J.R. (2005). Central regulation of energy balance: inputs, outputs and leptin resistance. Proceedings of the Nutrition Society, 64, 39–46.PubMedGoogle Scholar
  9. Argente, J., Barrios, V., Chowen, J.A., Sinha, M.K., & Considine, R.V. (1997). Leptin plasma levels in healthy Spanish children and adolescents, children with obesity, and adolescents with anorexia nervosa and bulimia nervosa. The Journal of Pediatrics, 131, 833–838.PubMedGoogle Scholar
  10. Asakawa, A., Inui, A., Ueno, N., Fujimiya, M., Fujino, M.A., & Kasuga, M. (1999). Mouse pancreatic polypeptide modulates food intake, while not influencing anxiety in mice. Peptides, 20, 1445–1448.PubMedGoogle Scholar
  11. Baggio, L.L., Huang, Q., Brown, T.J., & Drucker, D.J. (2004). Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology, 127, 546–558.PubMedGoogle Scholar
  12. Baldanzi, G., Filigheddu, N., Cutrupi, S., Catapano, F., Bonissoni, S., Fubini, A., Malan, D., Baj, G., Granata, R., Broglio, F., Papotti, M., Surico, N., Bussolino, F., Isgaard, J., Deghenghi, R., Sinigaglia, F., Prat, M., Muccioli, G., Ghigo, E., & Graziani, A. (2002). Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. The Journal of Cell Biology, 159, 1029–1037.PubMedGoogle Scholar
  13. Banks, W.A. (2006). The blood-brain barrier as a regulatory interface in the gut-brain axes. Physiology & Behavior, 89, 472–476.Google Scholar
  14. Bell, A., Gagnon, A., Dods, P., Papineau, D., Tiberi, M., & Sorisky, A. (2002). TSH signaling and cell survival in 3T3-L1 preadipocytes. American Journal of Physiology. Cell Physiology, 283, C1056–C1064.PubMedGoogle Scholar
  15. Berthoud, H.R., Sutton, G.M., Townsend, R.L., Patterson, L.M., & Zheng, H. (2006). Brainstem mechanisms integrating gut-derived satiety signals and descending forebrain information in the control of meal size. Physiology & Behavior, 89, 517–524.Google Scholar
  16. Boston, B.A., & Cone, R.D. (1996). Characterization of melanocortin receptor subtype expression in murine adipose tissues and in the 3T3-L1 cell line. Endocrinology, 137, 2043–2050.PubMedGoogle Scholar
  17. Broberger, C. (1999). Hypothalamic cocaine-and amphetamine-regulated transcript (CART) neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y. Brain Research, 289, 101–113.PubMedGoogle Scholar
  18. Bruning, J.C., Gautam, D., Burks, D.J., Gillette, J., Schubert, M., Orban, P.C., Klein, R., Krone, W., Muller-Wieland, D., & Kahn, C.R. (2000). Role of brain insulin receptor in control of body weight and reproduction. Science, 289, 2122–2125.PubMedGoogle Scholar
  19. Ceccatelli, S., Eriksson, M., & Hokfelt, T. (1989). Distribution and coexistence of corticotropin-releasing factor-, neurotensin-, enkephalin-, cholecystokinin-, galanin- and vasoactive intestinal polypeptide/peptide histidine isoleucine-like peptides in the parvocellular part of the paraventricular nucleus. Neuroendocrinology, 49, 309–323.PubMedGoogle Scholar
  20. Chartrel, N., Alvear-Perez, R., Leprince, J., Iturrioz, X., Reaux-Le Goazigo, A., Audinot, V., Chomarat, P., Coge, N., Nosjean, O., Rodriguez, M., Galizzi, J.P., Boutin, J.A., Vaudry, H., & Llorens-Cortes, C. (2007). Comment on “Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake”. Science, 315, 766.PubMedGoogle Scholar
  21. Chen, P., Williams, S.M., Grove, K.L., & Smith, M.S. (2004). Melanocortin 4 receptor-mediated hyperphagia and activation of neuropeptide Y expression in the dorsomedial hypothalamus during lactation. The Journal of Neuroscience, 24, 5091–5100.PubMedGoogle Scholar
  22. Cho, K.J., Shim, J.H., Cho, M.C., Choe, Y.K., Hong, J.T., Moon, D.C., Kim, J.W., & Yoon, D.Y. (2005). Signaling pathways implicated in alpha-melanocyte stimulating hormone-induced lipolysis in 3T3-L1 adipocytes. The Journal of Cell Biochemistry, 96, 869–878.Google Scholar
  23. Chowen, J., Fraser, H.M., Vician, L., Damassa, D.A., Clifton, D.K., & Steiner, R.A. (1989). Testosterone regulation of proopiomelanocortin messenger ribonucleicacid in the arcuate nucleus of the male rat. Endocrinology, 124, 1697–1702.Google Scholar
  24. Clement, K., Vaisse, C., Lahlou, N., Cabrol, S., Pelloux, V., Cassuto, D., Gourmelen, M., Dina, C., Chambaz, J., Lacorte, J.M., Basdevant, A., Bougneres, P., Lebouc, Y., Froguel, P., & Guy-Grand, B. (1998). A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature, 392, 398–401.PubMedGoogle Scholar
  25. Cone, R.D. (2000). The corticotropin-releasing hormone system and feeding behavior – a complex web begins to unravel. Endocrinology, 141, 2713–2714.PubMedGoogle Scholar
  26. Cooney, R.N. (2002). Suppressors of cytokine signaling (SOCS): inhibitors of the JAK/STAT pathway. Shock, 17, 83–90.PubMedGoogle Scholar
  27. Cota, D., Marsicano, G., Tschoep, M., Gruebler, Y., Flachskamm, C., Schubert, M., Auer, D., Yassouridis, A., Thöne-Reineke, C., Ortmann, S., Tomassoni, F., Cervino, C., Nisoli, E., Linthorst, A.C., Pasquali, R., Lutz, B., Stalla, G.K., & Pagotto, U. (2003). The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. The Journal of Clinical Investigation, 112, 423–431.PubMedGoogle Scholar
  28. Cunningham, M.J., Scarlett, J.M., & Steiner, R.A. (2002). Cloning and distribution of galaninlike peptide mRNA in the hypothalamus and pituitary of the macaque. Endocrinology, 143, 755–776.PubMedGoogle Scholar
  29. de Lecea, L., Kilduff, T.S., Peyron, C., Gao, X., Foye, P.E., Danielson, P.E., Fukuhara, C., Battenberg, E.L., Gautvik, VT., Bartlett, F.S. II, Frankel, W.N., van der Pol, A.N., Bloom, F.E., Gautvik, K.M., & Sutcliffe, J.G. (1998). The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proceedings of the National Academy of Science of the United States of America, 95, 322–327.Google Scholar
  30. del Rincon, J.P., Iida, K., Gaylinn, B.D., McCurdy, C.E., Leitner, J.W., Barbour, L.A., Kopchick, J.J., Friedman, J.E., Draznin, B., & Thorner, M.O. (2007). Growth hormone regulation of p85alpha expression and phosphoinositide 3-kinase activity in adipose tissue: mechanism for growth hormone-mediated insulin resistance. Diabetes, 56, 1638–1646.PubMedGoogle Scholar
  31. Devane, W.A., Hanus, L., Breuer, A., Pertwee, R.G., Stevenson, L.A., Griffin, G., Gibson, D., Mandelbaum, A., Etinger, A., & Mechoulam, R. (1992). Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science, 258, 1946–1949.PubMedGoogle Scholar
  32. Di Marzo, V., Goparaju, S.K., Wang, L., Liu, J., Batkai, S., Jarai, Z., Fezza, F., Miura, G.I., Palmiter, R.D., Sugiura, T., & Kunos, G. (2001). Leptin regulated endocannabinoids are involved in maintaining food intake. Nature, 410, 822–825.PubMedGoogle Scholar
  33. Dunbar, J., Lapanowski, K., Barnes, M., & Rafols, J. (2005). Hypothalamic agouti-related protein immunoreactivity in food-restricted, obese, and insulin-treated animals: evidence for glia cell localization. Experimental Neurology, 191, 184–192.PubMedGoogle Scholar
  34. Ellacott, K.L., & Cone, R.D. (2004). The central melanocortin system and the integration of short- and long-term regulators of energy homeostasis. Recent Progress in Hormone Research, 59, 395–408.PubMedGoogle Scholar
  35. Flint, D.J., Binart, N., Kopchick, J., & Kelly, P. (2003). Effects of growth hormone and prolactin on adipose tissue development and function. Pituitary, 6, 97–102.PubMedGoogle Scholar
  36. Fort, P., Salvert, D., Hanriot, L., Jego, S., Shimizu, H., Hashimoto, K., Mori, M., & Luppi, P.H. (2008). The satiety molecule nesfatin-1 is co-expressed with melanin concentrating hormone in tuberal hypothalamic neurons of the rat. Neuroscience, 155, 174–181.PubMedGoogle Scholar
  37. Friedberg, M., Zoumakis, E., Hiroi, N., Bader, T., Chrousos, G.P., & Hochberg, Z. (2003). Modulation of 11 beta-hydroxysteroid dehydrogenase type 1 in mature human subcutaneous adipocytes by hypothalamic messengers. The Journal of Clinical Endocrinology and Metabolism, 88, 385–393.PubMedGoogle Scholar
  38. Ganjavi, H., & Shapiro, C.M. (2007). Hypocritin/Orexin: a molecular link between sleep, energy regulation and pleasure. Journal of Neuropsychiatry and Clinical Neuroscience, 19, 413–419.Google Scholar
  39. Gerozissis, K. (2008). Brain insulin, energy and glucose homeostasis: genes, environment and metabolic pathologies. European Journal of Pharmacology, 585, 38–49.PubMedGoogle Scholar
  40. Grill, H.J., & Kaplan, J.M. (2002). The neuroanatomical axis for control of energy balance. Frontiers in Neuroendocrinology, 23, 2–40.PubMedGoogle Scholar
  41. Gross, P.M. (1992). Circumventricular organ capillaries. Progress in Brain Research, 91, 219–233.PubMedGoogle Scholar
  42. Gutzwiller, J.P., Göke, B., Drewe, J., Hildebrand, P., Ketterer, S., Handschin, D., Winterhalder, R., Conen, D., & Beglinger, C. (1999). Glucagon-like peptide-1: a potent regulator of food intake in humans. Gut, 44, 81–86.PubMedGoogle Scholar
  43. Hahn, T.M., Breininger, J.F., Baskin, D.G., & Schwartz, M.W. (1998). Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature Neuroscience, 1, 271–272.PubMedGoogle Scholar
  44. Hakansson, M.L., Brown, H., Ghilardi, N., Skoda, R.C., & Meister, B. (1998). Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. The Journal of Neuroscience, 18, 559–572.PubMedGoogle Scholar
  45. Hakansson, M., de Lecea, L., Sutcliffe, J.G., Yanagisawa, M., & Meister, B. (1999). Leptin receptor- and STAT3-immunoreactivities in hypocretin/orexin neurones of the lateral hypothalamus. Journal of Neuroendocrinology, 11, 653–663.PubMedGoogle Scholar
  46. Heatherington, A.W., & Ranson, S.W. (1940). Hypothalamic lesions and adiposity in the rat. Anatomical Records, 78, 149–172.Google Scholar
  47. Hensen, K.R., Krasnow, S.M., Nolan, M.A., Fraley, G.S., Baumgartner, J.W., Clifton, D.K., & Steiner, R.A. (2003). Activation of the sympathetic nervous system by galanin-like peptide--a possible link between leptin and metabolism. Endocrinology, 144, 4709–4717.Google Scholar
  48. Higuchi, H., Hasegawa, A., & Yamaguchi, T. (2005). Transcriptional regulation of neuronal genes and its effect on neural functions: transcriptional regulation of neuropeptide Y gene by leptin and its effect on feeding. Journal of Pharmacological Sciences, 98, 225–231.PubMedGoogle Scholar
  49. Howlett, A.C. (2002). The cannabinoid receptors. Prostaglandins Other Lipid Mediators, 68–69, 619–631.PubMedGoogle Scholar
  50. Hoyda, T.D., Samson, W.K., & Ferguson, A.V. (2009). Adiponectin depolarizes parvocellular paraventricular nucleus neurons controlling neuroendocrine and autonomic function. Endocrinology, 150, 832–840.PubMedGoogle Scholar
  51. Huang, Q., Rivest, R., & Richard, D. (1998). Effects of leptin on corticotropin-releasing factor (CRF) synthesis and CRF neuron activation in the paraventricular hypothalamic nucleus of obese (ob/ob) mice. Endocrinology, 139, 1524–1532.PubMedGoogle Scholar
  52. Huo, L., Grill, H.J., & Bjorbaek, C. (2006). Divergent regulation of proopiomelanocortin neurons by leptin in the nucleus of the solitary tract and in the arcuate hypothalamic nucleus. Diabetes, 55, 567–573.PubMedGoogle Scholar
  53. Iwen, K.A., Senyaman, O., Schwartz, A., Drenckhan, M., Meier, B., Hadaschik, D., & Klein J. (2008). Melanocortin crosstalk with adipose functions: ACTH directly induces insulin resistance, promotes a pro-inflammatory adipokine profile and stimulates UCP-1 in adipocytes. Journal of Endocrinology, 196, 465–472.PubMedGoogle Scholar
  54. Jayasena, C.N., & Bloom, S.R. (2008). Role of gut hormones in obesity. Endocrinology Metabolism Clinics of North America, 37, 769–787.Google Scholar
  55. Juréus, A., Cunningham, M.J., Li, D., Johnson, J.L., Krasnow, S.M., Teklemichael, D.N., Clifton, D.K., & Steiner, R.A. (2001). Distribution and regulation of galanin-like peptide (GALP) in the hypothalamus of the mouse. Endocrinology, 142, 5140–5144.PubMedGoogle Scholar
  56. Kastin, A.J., & Pan, W. (2000). Dynamic regulation of leptin entry into brain by the blood-brain barrier. Regulatory Peptides, 92, 37–43.PubMedGoogle Scholar
  57. Katsuura, G., Asakawa, A., & Inui, A. (2002). Roles of pancreatic polypeptide in regulation of food intake. Peptides, 23, 323–329.PubMedGoogle Scholar
  58. Kim, M.S., Rossi, M., Abusnana, S., Sunter, D., Morgan, D.G., Small, C.J., Edwards, C.M., Heath, M.M., Stanley, S.A., Seal, L.J., Bhatti, J.R., Smith, D.M., Ghatei, M.A., & Bloom, S.R. (2000). Hypothalamic localization of the feeding effect of agouti-related peptide and alpha-melanocyte-stimulating hormone. Diabetes, 49, 177–182.PubMedGoogle Scholar
  59. Kim, E.M., Grace, M.K., O’Hare, E., Billington, C.J. & Levine A.S. (2002). Injection of alpha-MSH, but not beta-endorphin, into the PVN decreases POMC gene expression in the ARC. NeuroReport, 13, 497–500.PubMedGoogle Scholar
  60. Kishi, T., Aschkenasi, C.J., Lee, C.E., Mountjoy, K.G., Saper, C.B. & Elmquist, J.K. (2003). Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. Journal of Comparative Neurology, 457, 213–235.PubMedGoogle Scholar
  61. Kohno, D., Nakata, M., Maejima, Y., Shimizu, H., Sedbazar, U., Yoshida, N., Dezaki, K., Onaka, T., Mori, M., & Yada, T. (2008). Nesfatin-1 neurons in paraventricular and supraoptic nuclei of the rat hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding. Endocrinology, 149, 1295–1301.PubMedGoogle Scholar
  62. Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., & Kangawa, K. (1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 402, 656–660.PubMedGoogle Scholar
  63. Korner, A., Kratzsch, J., & Kiess, W. (2005). Adipocytokines: leptin–the classical, resistin–the controversical, adiponectin–the promising, and more to come. Best Practice & Research Clinical Endocrinology & Metabolism, 19, 525–546.Google Scholar
  64. Krahn, D.D., Gosnell, B.A., Levine, A.S., & Morley, J.E. (1988). Behavioral effects of corticotropin-releasing factor: localization and characterization of central effects. Brain Research, 443, 63–69.PubMedGoogle Scholar
  65. Krasnow, S.M., Fraley, G.S., Schuh, S.M., Baumgartner, J.W., Clifton, D.K., & Steiner, R.S. (2003). A role for galanin-like peptide in the integration of feeding, body weight regulation, and reproduction in the mouse. Endocrinology, 144, 813–822.PubMedGoogle Scholar
  66. Lam, T.K., Schwartz, G.J., & Rossetti, L. (2005). Hypothalamic sensing of fatty acids. Nature Neuroscience, 8, 579–584.PubMedGoogle Scholar
  67. Leibowitz, S.F. (1998). Differential functions of hypothalamic galanin cell grows in the regulation of eating and body weight. Annals of the New York Academy of Science, 863, 206–220.Google Scholar
  68. López, M., Lelliott, C.J., Tovar, S., Kimber, W., Gallego, R., Virtue, S., Blount, M., Vázquez, M.J., Finer, N., Powles, T.J., O’Rahilly, S., Saha, A.K., Diéguez, C., & Vidal-Puig A.J. (2006). Tamoxifen-induced anorexia is associated with fatty acid synthase inhibition in the ventromedial nucleus of the hypothalamus and accumulation of malonyl-CoA. Diabetes, 55, 1327–1336.PubMedGoogle Scholar
  69. Ludwig, D.S., Tritos, N.A., Mastaitis, J.W., Kulkarni, R., Kokkotou, E., Elmquist, J., Lowell, B., Flier, J.S. & Maratos-Flier, E. (2001). Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. The Journal of Clinical Investigation, 107, 379–386.PubMedGoogle Scholar
  70. Lutz, T.A. (2006). Amylinergic control of food intake. Physiology & Behavior, 89, 465–471.Google Scholar
  71. Martínez, A., Kapas, S., Miller, M.J., Ward, Y., & Cuttitta, F. (2000). Coexpression of receptors for adrenomedullin, calcitonin gene-related peptide, and amylin in pancreatic beta-cells. Endocrinology, 141, 406–411.PubMedGoogle Scholar
  72. Marty, N., Dallaporta, M., Foretz, M., Emery, M., Tarussio, D., Bady, I., Binnert, C., Beermann, F., & Thorens, B. (2005). Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. The Journal of Clinical Investigation, 115, 3545–3553.PubMedGoogle Scholar
  73. Marty, N., Dallaporta, M., & Thorens, B. (2007). Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda), 22, 241–251.Google Scholar
  74. Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N.E., Schatz, A.R., Gopher, A., Almog, S., Martin, B.R., & Compton, D.R. (1995). Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochemical Pharmacology, 50, 83–90.PubMedGoogle Scholar
  75. Meier, U., & Gressner, A.M. (2004). Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clinical Chemistry, 50, 1511–1525.PubMedGoogle Scholar
  76. Menéndez, C., Baldelli, R., Camiña, J.P., Escudero, B., Peino, R, Diéguez, C., & Casanueva, F.F (2003). TSH stimulates leptin secretion by a direct effect on adipocytes. Journal of Endocrinology, 176, 7–12.PubMedGoogle Scholar
  77. Mondal, M.S., Nakazato, M., Date, Y., Murakami, N., Yanagisawa, M., & Matsukura, S. (1999). Widespread distribution of orexin in rat brain and its regulation upon fasting. Biochemical and Biophysical Research Communications, 256, 495–499.PubMedGoogle Scholar
  78. Mori, H., Hanada, R., Hanada, T., Aki, D., Mashima, R., Nishinakamura, H., Torisu, T., Chien, K.R., Yasukawa, H., & Yoshimura, A. (2004). Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nature Medicine, 10, 739–743.PubMedGoogle Scholar
  79. Morton, G.J., Cummings, D.E., Baskin, D.G., Barsh, G.S., & Schwartz, M.W. (2006). Central nervous system control of food intake and body weight. Nature, 443, 289–295.PubMedGoogle Scholar
  80. Murata, M., Okimura, Y., Iida, K., Matsumoto, M., Sowa, H., Kaji, H., Kojima, M., Kangawa, K., & Chihara, K. (2002). Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells. The Journal of Biological Chemistry, 277, 5667–5674.PubMedGoogle Scholar
  81. Murphy, K.G., Dhillo, W.S., & Bloom, S.R. (2006). Gut peptides in the regulation of food intake and energy homeostasis. Endocrine Reviews, 27, 719–727.PubMedGoogle Scholar
  82. Myers, M.G. Jr. (2004). Leptin receptor signaling and the regulation of mammalian physiology. Recent Progress in Hormone Research, 59, 287–304.PubMedGoogle Scholar
  83. Näslund, E., Barkeling, B., King, N., Gutniak, M., Blundell, J.E., Holst, J.J., Rössner S., & Hellström, P.M. (1999). Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. International Journal of Obesity and Related Metabolic Disorders, 23, 304–311.PubMedGoogle Scholar
  84. Niswender, K.D., & Schwartz, M.W. (2003). Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Frontiers in Neuroendocrinology, 24, 1–10.PubMedGoogle Scholar
  85. Nonaka, N., Shioda, S., Niehoff, M.L., & Banks, W.A. (2003). Characterization of blood-brain barrier permeability to PYY3-36 in the mouse. Journal of Pharmacology and Experimental Therapeutics, 306, 948–953.PubMedGoogle Scholar
  86. Norman, D., Isidori, A.M., Frajese, V., Caprio, M., Chew, S.L., Grossman, A.B., Clark, A.J., Michael Besser, G., & Fabbri, A. (2003). ACTH and alpha-MSH inhibit leptin expression and secretion in 3T3-L1 adipocytes: model for a central-peripheral melanocortin-leptin pathway. Molecular and Cellular Endocrinology, 200, 99–109.PubMedGoogle Scholar
  87. Obici, S., Feng, Z., Morgan, K., Stein, D., Karkanias, G., & Rossetti L. (2002a). Central administration of oleic acid inhibits glucose production and food intake. Diabetes, 51, 271–275.PubMedGoogle Scholar
  88. Obici, S., Feng, Z., Karkanias, G., Baskin, D.G., & Rossetti, L. (2002b). Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nature Neuroscience, 5, 566–572.PubMedGoogle Scholar
  89. Oh-I, S., Shimizu, H., Satoh, T., Okada, S., Adachi, S., Inoue, K., Eguchi, H., Yamamoto, M., Imaki, T., Hashimoto, K., Tsuchiya, T., Monden, T., Horiguchi, K., Yamada, M., & Mori, M. (2006). Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature, 443, 709–712.PubMedGoogle Scholar
  90. Okamoto, H., Nakae, J., Kitamura, T., Park, B.C., Dragatsis, I., & Accili, D. (2004). Transgenic rescue of insulin receptor-deficient mice. Journal of Clinical Investigation, 114, 214–223.PubMedGoogle Scholar
  91. Orosco, M., Gerozissis, K., Rouch, C., & Nicolaïdis, S. (1995). Feeding-related immunoreactive insulin changes in the PVN-VMH revealed by microdialysis. Brain Research, 671, 149–158.PubMedGoogle Scholar
  92. Pal, R., & Sahu, A. (2003). Leptin signaling in the hypothalamus during chronic central leptin infusion. Endocrinology, 144, 3789–3798.PubMedGoogle Scholar
  93. Pan, W., Hsuchou, H., & Kastin, A.J. (2007). Nesfatin-1 crosses the blood-brain barrier without saturation. Peptides, 28, 2223–2228.PubMedGoogle Scholar
  94. Pelleymounter, M.A., Cullen, M.J., Baker, M.B., Hecht, R., Winters, D., Boone, T., & Collins, F. (1995). Effects of the obese gene product on body weight regulation in ob/ob mice. Science, 269, 540–543.PubMedGoogle Scholar
  95. Perseghin, G., Petersen, K., & Shulman, G.I. (2003). Cellular mechanism of insulin resistance: potential links with inflammation. International Journal of Obesity and Related Metabolic Disorders, 27 (Suppl 3), S6–S11.PubMedGoogle Scholar
  96. Sahu, A. (2004). Minireview: a hypothalamic role in energy balance with special emphasis on leptin. Endocrinology, 145, 2613–2620.PubMedGoogle Scholar
  97. Sarkar, S., Wittmann, G., Fekete, C., & Lechan, R.M. (2004). Central administration of cocaine-and amphetamine-regulated transcript increases phosphorylation of cAMP response element binding protein in corticotrophin-releasing hormone-producing neurons but not in protyrotropin-releasing hormone-producing neurons in the hypothalamic paraventricular nucleus. Brain Research, 999, 181–192.PubMedGoogle Scholar
  98. Scarpace, P.J. & Zhang, Y. (2009). Leptin resistance: a predisposing factor for diet-induced obesity. American Journal of Regulatory and Integrative Comparative Physiology, 296, R493–R500.Google Scholar
  99. Schäffler, A., Schölmerich, J., & Buechler, C. (2006). The role of ‘adipotropins’ and the clinical importance of a potential hypothalamic-pituitary-adipose axis. Nature Clinical Practice Endocrinology & Metabolism, 2, 374–383.Google Scholar
  100. Schwartz, M.W., Woods, S.C., Porte, D. Jr., Seeley, R.J., & Baskin, D.G. (2000). Central nervous system control of food intake. Nature, 404, 661–671.PubMedGoogle Scholar
  101. Shimokawa, T., Kumar, M.V., & Lane, M.D. (2002). Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Proceedings of the National Academy of Sciences of the United States of America, 99, 66–71.PubMedGoogle Scholar
  102. Shintani, M., Nishimura, H., Akamizu, T., Yonemitsu, S., Masuzaki, H., Ogawa, Y., Hosoda, K., Inoue, G., Yoshimasa, Y., & Nakao, K. (1999). Thyrotropin decreases leptin production in rat adipocytes. Metabolism, 48, 1570–1574.PubMedGoogle Scholar
  103. Sindelar, D.K., Mystkowski, P., Marsh, D.J., Palmiter, R.D., & Schwartz, M.W. (2002). Attenuation of diabetic hyperphagia in neuropeptide Y-deficient mice. Diabetes, 51, 778–783.PubMedGoogle Scholar
  104. Sone, M., & Osamura, R.Y. (2001). Leptin and the pituitary. Pituitary, 4, 15–23.PubMedGoogle Scholar
  105. Soriano-Guillén, L., Barrios, V., Campos-Barros, A., & Argente, J. (2004). Ghrelin levels in obesity and anorexia nervosa: effect of weight reduction or recuperation. The Journal of Pediatrics, 144, 36–42.PubMedGoogle Scholar
  106. Sorisky, A., Bell, A., & Gagnon, A. (2000). TSH receptor in adipose cells. Hormone and Metabolic Research, 32, 468–474.PubMedGoogle Scholar
  107. South, T., & Huang, X.F. (2008). Temporal and site-specific brain alterations in CB1 receptor binding in high fat diet-induced obesity in C57BI/6 mice. Journal of Neuroendocrinology, 20, 1288–1294.PubMedGoogle Scholar
  108. Spranger, J., Verma, S., Göhring, I., Bobbert, T., Seifert, J., Sindler, A.L., Pfeiffer, A., Hileman, S.M., Tschöp, M., & Banks, W.A. (2006). Adiponectin does not cross the blood-brain barrier but modifies cytokine expression of brain endothelial cells. Diabetes, 55, 141–147.PubMedGoogle Scholar
  109. Stengel, A., Goebel, M., Yakubov, I., Wang, L., Witcher, D., Coskun, T., Taché, Y., Sachs, G., & Lambrecht, N.W. (2008). Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology [doi: 10.1210/en.2008-00747].Google Scholar
  110. Swart, I., Jahng, J.W., Overton, J.M., & Houpt, T.A. (2002). Hypothalamic NPY, AGRP, and POMC mRNA responses to leptin and refeeding in mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 283, R1020–R1026.PubMedGoogle Scholar
  111. Takenoya, F., Funahashi, H., Matsumoto, H., Ohtaki, T., Katoh, S., Kageyama, H., Suzuki, R., Takeuchi, M., & Shioda, S. (2002). Galanin-like peptide is co-localized with alpha-melanocyte stimulating hormone but not with neuropeptide Y in the rat brain. Neuroscience Letters, 331, 119–122.PubMedGoogle Scholar
  112. Takenoya, F., Aihara, K., Funahashi, H., Matsumoto, H., Ohtaki, T., Tsurugano, S., Yamada, S., Katoh, S., Kageyama, H., Takeuchi, M., & Shioda, S. (2003). Galanin-like peptide is target for regulation by orexin in the rat hypothalamus. Neuroscience Letters, 340, 209–212.PubMedGoogle Scholar
  113. Ter Horst, G.J., de Boer, P., Luiten, P.G., & van Willigen, J.D. (1989). Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracing study in the rat. Neuroscience, 31, 785–797.Google Scholar
  114. Toshinai, K., Yamaguchi, H., Sun, Y., Smith, R.G., Yamanaka, A., Sakurai, T., Date, Y., Mondal, M.S., Shimbara, T., Kawagoe, T., Murakami, N., Miyazato, M., Kangawa, K., & Nakazato, M. (2006). Des-acyl ghrelin induces food intake by a mechanism independent of the growth hormone secretagogue receptor. Endocrinology, 147, 2306–2314.PubMedGoogle Scholar
  115. Tovar, S., Nogueiras, R., Tung, L.Y., Castañeda, T.R., Vázquez, M.J., Morris, A., Williams, L.M., Dickson, S.L., & Diéguez, C. (2005). Central administration of resistin promotes short-term satiety in rats. European Journal of Endocrinology, 153, R1–R5.PubMedGoogle Scholar
  116. Tucci, S.A., Rogers, E.K., Korbonits, M., & Kirkham, T.C. (2004). The cannabinoid CB1 receptor antagonist SR141716 blocks the orexigeneic effects of intrahypothalamic ghrelin. British Journal of Pharmacology, 143, 520–523.PubMedGoogle Scholar
  117. Urban, J.H., Bauer-Dantoin, A.C., & Levine, J.E. (1993). Neuropeptide Y gene expression in the arcuate nucleus: sexual dimorphism and modulation by testosterone. Endocrinology, 132, 139–145.PubMedGoogle Scholar
  118. Vicentic, A., & Jones, D.C. (2007). The CART (cocaine-and amphetamine-regulated transcript) system in appetite and drug addiction. Journal of Pharmacology and Experimental Therapeutics, 320, 499–506.PubMedGoogle Scholar
  119. Viengchareun, S., Bouzinba-Segard, H., Laigneau, J.P., Zennaro, M.C., Kelly, P.A., Bado, A., Bado, A., Lombès, M., & Binart, N. (2004). Prolactin potentiates insulin-stimulated leptin expression and release from differentiated brown adipocytes. Journal of Molecular Endocrinology, 33, 679–691.PubMedGoogle Scholar
  120. Vrang, N., Larsen, P.J., Clausen, J.T., & Kristensen, P. (1999). Neurochemical characterization of the hypothalamic cocaine-amphetamine-regulated transcript neurons. The Journal of Neuroscience, 19, RC5: 1–8.Google Scholar
  121. Wallenius, K., Wallenius, V., Sunter, D., Dickson, S.L., & Jansson, J.O. (2002). Intracerebroventricular interleukin-6 treatment decreases body fat in rats. Biochemical and Biophysical Research Communication, 293, 560–565.Google Scholar
  122. Williams, D.L., Kaplan, J.M., & Grill, H.J. (2000). The role of the dorsal vagal complex and the vagus nerve in feeding effects of melanocortin-3/4 receptor stimulation. Endocrinology, 141, 1332–1337.PubMedGoogle Scholar
  123. Woods, S.C., & D’Alessio, D.A. (2008). Central control of body weight and appetite. The Journal of Clinical Endocrinology and Metabolism, 93, S37–S50.PubMedGoogle Scholar
  124. Wynne, K., & Bloom, S.R. (2006). The role of oxyntomodulin and peptide tyrosine-tyrosine (PYY) in appetite control. Nature Clinical Practice Endocrinology and Metabolism, 2, 612–620.PubMedGoogle Scholar
  125. Wynne, K., Stanley S., McGowan, B., & Bloom, S. (2005a). Appetite control. The Journal of Endocrinology, 184, 291–318.PubMedGoogle Scholar
  126. Wynne, K., Park, A.J., Small, C.J., Patterson, M., Ellis, S.M., Murphy, K.G., Wren, A.M., Frost, G.S., Meeran, K., Ghatei, M.A., & Bloom, S.R. (2005b). Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes, 54, 2390–2395.PubMedGoogle Scholar
  127. Xu, B., Goulding, E.H., Zang, K., Cepoi, D., Cone, R.D., Jones, K.R., Tecott, L.H., & Reichardt, L.F. (2003). Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nature Neuroscience, 6, 736–742.PubMedGoogle Scholar
  128. Xue, B., Kim, Y.B., Lee, A., Toschi, E., Bonner-Weir, S., Kahn, C.R., Neel, B.G., & Kahn, B.B. (2007). Protein-tyrosine phosphatase 1B deficiency reduces insulin resistance and the diabetic phenotype in mice with polygenic insulin resistance. The Journal of Biological Chemistry, 282, 23829–23840.PubMedGoogle Scholar
  129. Yang, X.J., Kow, L.M., Pfaff, D.W., & Mobbs, C.V. (2004). Metabolic pathways that mediate inhibition of hypothalamic neurons by glucose. Diabetes, 53, 67–73.PubMedGoogle Scholar
  130. Zarjevski, N., Cusin, I., Vettor, R., Rohner-Jeanrenaud, F., & Jeanrenaud, B. (1993). Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology, 133, 1753–1758.PubMedGoogle Scholar
  131. Zhang, J.V., Ren, P.G., Avsian-Kretchmer, O., Luo, C.W., Rauch, R., Klein, C., & Hsueh, A.J. (2005). Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science, 310, 996–999.PubMedGoogle Scholar
  132. Zhao, A.Z., Shinohara, M.M., Huang, D., Shimizu, M., Eldar-Finkelman, H., Krebs, E.G., Beavo, J.A., & Bornfeldt, K.E. (2000). Leptin induces insulin-like signaling that antagonizes cAMP elevation by glucagon in hepatocytes. The Journal of Biological Chemistry, 275, 11348–11354.PubMedGoogle Scholar
  133. Ziotopoulou, M., Mantzoros, C.S., Hileman, S.M., & Flier, J.S. (2000). Differential expression of hypothalamic neuropeptides in the early phase of diet-induced obesity in mice. American Journal of Physiology, Endocrinology and Metabolism, 279, E838–E845.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Vicente Barrios
    • 1
    • 3
  • Gabriel Ángel Martos-Moreno
    • 1
    • 3
  • Laura M. Frago
    • 2
    • 3
  • Julie A. Chowen
    • 1
    • 3
  • Jesús Argente
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of EndocrinologyHospital Infantil Universitario Niño JesúsMadridSpain
  2. 2.CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Instituto Carlos IIIMadridSpain
  3. 3.Department of PediatricsHospital Infantil Universitario Niño JesúsMadridSpain
  4. 4.Department of PediatricsUniversidad Autónoma de MadridMadridSpain

Personalised recommendations