TGF-β Signaling Alterations and Colon Cancer

  • Naresh Bellam
  • Boris Pasche
Part of the Cancer Treatment and Research book series (CTAR, volume 155)


Colorectal cancer is the second most common cause of cancer-related death in the United States. Twin studies suggest that 35% of all colorectal cancer cases are inherited. High-penetrance tumor susceptibility genes account for at most 3–6% of all colorectal cancer cases and the remainder of the unexplained risk is likely due to a combination of low to moderate penetrance genes. Recent genome-wide association studies have identified several SNPs near genes belonging to the transforming growth factor beta (TGF-β) superfamily such as GREM1 and SMAD7. Together with the recent discovery that constitutively decreased TGFBR1 expression is a potent modifier of colorectal cancer risk, these findings strongly suggest that germline variants of the TGF-β superfamily may account for a sizeable proportion of colorectal cancer cases. The TGF-β superfamily signaling pathways mediate many different biological processes during embryonic development, and in adult organisms they play a role in tissue homeostasis. TGF-β has a central role in inhibiting cell proliferation and also modulates processes such as cell invasion, immune regulation, and microenvironment modification. Mutations in the TGF-β type II receptor (TGFBR2) are estimated to occur in approximately 30% of colorectal carcinomas. Mutations in SMAD4 and BMPR1A are found in patients with familial juvenile polyposis, an autosomal dominant condition associated with an increased risk of colorectal cancer. This chapter provides an overview of the genetic basis of colorectal cancer and discusses recent discoveries related to alterations in the TGF-β pathways and their role in the development of colorectal cancer.


Colorectal Cancer Epithelial Mesenchymal Transition Adenomatous Polyposis Coli Lynch Syndrome Colorectal Cancer Risk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by grants R01 CA108741, R01 CA112520, R01 137000, and P60 AR048098 from NIH.


  1. 1.
    Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA: A Cancer Journal for Clinicians, 59(4):225–249CrossRefGoogle Scholar
  2. 2.
    Moertel C, Fleming TR, Macdonald JS, Mailliard JA (1995) Fluorouracil plus levamisole as effective adjuvant therapy after resection of stage III colon carcinoma: a final report. Ann Int Med 122:321–326PubMedGoogle Scholar
  3. 3.
    Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342PubMedCrossRefGoogle Scholar
  4. 4.
    Fuchs CS, Giovannucci EL, Colditz GA, Hunter DJ, Speizer FE, Willett WC (1994) A prospective study of family history and the risk of colorectal cancer. N Engl J Med 331:1669–1674PubMedCrossRefGoogle Scholar
  5. 5.
    Johns LE, Houlston RS (2001) A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol 96:2992–3003PubMedCrossRefGoogle Scholar
  6. 6.
    Butterworth AS, Higgins JP, Pharoah P (2006) Relative and absolute risk of colorectal cancer for individuals with a family history: a meta-analysis. Eur J Cancer 42:216–227PubMedCrossRefGoogle Scholar
  7. 7.
    Lichtenstein P, Holm NV, Verkasalo PK et al (2000) Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85PubMedCrossRefGoogle Scholar
  8. 8.
    Bisgaard ML, Fenger K, Bulow S, Niebuhr E, Mohr J (1994) Familial adenomatous polyposis (FAP): frequency, penetrance, and mutation rate. Hum Mutat 3:121–125PubMedCrossRefGoogle Scholar
  9. 9.
    Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348:919–932PubMedCrossRefGoogle Scholar
  10. 10.
    Laken SJ, Petersen GM, Gruber SB et al (1997) Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet 17:79–83PubMedCrossRefGoogle Scholar
  11. 11.
    Rozen P, Shomrat R, Strul H et al (1999) Prevalence of the I1307K APC gene variant in Israeli Jews of differing ethnic origin and risk for colorectal cancer. Gastroenterology 116:54–57PubMedCrossRefGoogle Scholar
  12. 12.
    Rustgi AK (2007) The genetics of hereditary colon cancer. Genes Dev 21:2525–2538PubMedCrossRefGoogle Scholar
  13. 13.
    Foulkes WD (2008) Inherited susceptibility to common cancers. N Engl J Med 359: 2143–2153PubMedCrossRefGoogle Scholar
  14. 14.
    Lynch HT, Lynch JF, Lynch PM, Attard T (2008) Hereditary colorectal cancer syndromes: molecular genetics, genetic counseling, diagnosis and management. Fam Cancer 7:27–39PubMedCrossRefGoogle Scholar
  15. 15.
    Al-Tassan N, Chmiel NH, Maynard J et al (2002) Inherited variants of MYH associated with somatic G:C–>T:A mutations in colorectal tumors. Nat Genet 30:227–232PubMedCrossRefGoogle Scholar
  16. 16.
    Avezzu A, Agostini M, Pucciarelli S et al (2008) The role of MYH gene in genetic predisposition to colorectal cancer: another piece of the puzzle. Cancer Lett 268:308–313PubMedCrossRefGoogle Scholar
  17. 17.
    Colebatch A, Hitchins M, Williams R, Meagher A, Hawkins NJ, Ward RL (2006) The role of MYH and microsatellite instability in the development of sporadic colorectal cancer. Br J Cancer 95:1239–1243PubMedCrossRefGoogle Scholar
  18. 18.
    Croitoru ME, Cleary SP, Di Nicola N et al (2004) Association between biallelic and monoallelic germline MYH gene mutations and colorectal cancer risk. J Natl Cancer Inst 96:1631–1634PubMedCrossRefGoogle Scholar
  19. 19.
    Enholm S, Hienonen T, Suomalainen A et al (2003) Proportion and phenotype of MYH-associated colorectal neoplasia in a population-based series of Finnish colorectal cancer patients. Am J Pathol 163:827–832PubMedCrossRefGoogle Scholar
  20. 20.
    Kambara T, Whitehall VL, Spring KJ et al (2004) Role of inherited defects of MYH in the development of sporadic colorectal cancer. Genes Chromosomes Cancer 40:1–9PubMedCrossRefGoogle Scholar
  21. 21.
    Wang L, Baudhuin LM, Boardman LA et al (2004) MYH mutations in patients with attenuated and classic polyposis and with young-onset colorectal cancer without polyps. Gastroenterology 127:9–16PubMedCrossRefGoogle Scholar
  22. 22.
    Zhou XL, Djureinovic T, Werelius B, Lindmark G, Sun XF, Lindblom A (2005) Germline mutations in the MYH gene in Swedish familial and sporadic colorectal cancer. Genet Test 9:147–151PubMedCrossRefGoogle Scholar
  23. 23.
    Farrington SM, Tenesa A, Barnetson R et al (2005) Germline susceptibility to colorectal cancer due to base-excision repair gene defects. Am J Hum Genet 77:112–119PubMedCrossRefGoogle Scholar
  24. 24.
    Lubbe SJ, Di Bernardo MC, Chandler IP, Houlston RS (2009) Clinical implications of the colorectal cancer risk associated with MUTYH mutation. J Clin Oncol 27:3975–3980PubMedCrossRefGoogle Scholar
  25. 25.
    Lipton L, Halford SE, Johnson V et al (2003) Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res 63:7595–7599PubMedGoogle Scholar
  26. 26.
    Poulsen ML, Bisgaard ML (2008) MUTYH associated polyposis (MAP). Curr Genomics 9:420–435PubMedCrossRefGoogle Scholar
  27. 27.
    Kemp Z, Thirlwell C, Sieber O, Silver A, Tomlinson I (2004) An update on the genetics of colorectal cancer. Hum Mol Genet 13:R177–R185PubMedCrossRefGoogle Scholar
  28. 28.
    Zanke BW, Greenwood CM, Rangrej J et al (2007) Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 39:989–994PubMedCrossRefGoogle Scholar
  29. 29.
    Tomlinson I, Webb E, Carvajal-Carmona L et al (2007) A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 39:984–988PubMedCrossRefGoogle Scholar
  30. 30.
    Jaeger E, Webb E, Howarth K et al (2008) Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk. Nat Genet 40:26–28PubMedCrossRefGoogle Scholar
  31. 31.
    Broderick P, Carvajal-Carmona L, Pittman AM et al (2007) A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet 39:1315–1317PubMedCrossRefGoogle Scholar
  32. 32.
    Houlston RS, Webb E, Broderick P et al (2008) Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet 40:1426–1435PubMedCrossRefGoogle Scholar
  33. 33.
    Tenesa A, Farrington SM, Prendergast JG et al (2008) Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 40:631–637PubMedCrossRefGoogle Scholar
  34. 34.
    Lee IM, Paffenbarger RS Jr (1992) Quetelet’s index and risk of colon cancer in college alumni. J Natl Cancer Inst 84:1326–1331PubMedCrossRefGoogle Scholar
  35. 35.
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638PubMedCrossRefGoogle Scholar
  36. 36.
    Macinnis RJ, English DR, Hopper JL, Haydon AM, Gertig DM, Giles GG (2004) Body size and composition and colon cancer risk in men. Cancer Epidemiol Biomarkers Prev 13:553–559PubMedGoogle Scholar
  37. 37.
    Pischon T, Lahmann PH, Boeing H et al (2006) Body size and risk of colon and rectal cancer in the European prospective investigation into cancer and nutrition (EPIC). J Natl Cancer Inst 98:920–931PubMedCrossRefGoogle Scholar
  38. 38.
    Larsson SC, Wolk A (2007) Obesity and colon and rectal cancer risk: a meta-analysis of prospective studies. Am J Clin Nutr 86:556–565PubMedGoogle Scholar
  39. 39.
    Wei EK, Giovannucci E, Fuchs CS, Willett WC, Mantzoros CS (2005) Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J Natl Cancer Inst 97:1688–1694PubMedCrossRefGoogle Scholar
  40. 40.
    Wei EK, Ma J, Pollak MN et al (2005) A prospective study of C-peptide, insulin-like growth factor-I, insulin-like growth factor binding protein-1, and the risk of colorectal cancer in women. Cancer Epidemiol Biomarkers Prev 14:850–855PubMedCrossRefGoogle Scholar
  41. 41.
    Giovannucci E, Pollak MN, Platz EA et al (2000) A prospective study of plasma insulin-like growth factor-1 and binding protein-3 and risk of colorectal neoplasia in women. Cancer Epidemiol Biomarkers Prev 9:345–349PubMedGoogle Scholar
  42. 42.
    Ma J, Giovannucci E, Pollak M et al (2004) A prospective study of plasma C-peptide and colorectal cancer risk in men. J Natl Cancer Inst 96:546–553PubMedCrossRefGoogle Scholar
  43. 43.
    Sandhu MS, Dunger DB, Giovannucci EL (2002) Insulin, insulin-like growth factor-I (IGF-I), IGF binding proteins, their biologic interactions, and colorectal cancer. J Natl Cancer Inst 94:972–980PubMedCrossRefGoogle Scholar
  44. 44.
    Kaklamani VG, Sadim M, Hsi A et al (2008) Variants of the adiponectin and adiponectin receptor 1 genes and breast cancer risk. Cancer Res 68:3178–3184PubMedCrossRefGoogle Scholar
  45. 45.
    Carvajal-Carmona LG, Spain S, The CORGI Consortium et al (2009) Common variation at the adiponectin locus is not associated with colorectal cancer risk in the UK. Hum Mol Genet 18:1889–1892PubMedCrossRefGoogle Scholar
  46. 46.
    Noffsinger AE (2009) Serrated polyps and colorectal cancer: new pathway to malignancy. Annu Rev Pathol 4:343–364PubMedCrossRefGoogle Scholar
  47. 47.
    Castells A (2008) MYH-associated polyposis: adenomas and hyperplastic polyps, partners in crime? Gastroenterology 135:1857–1859PubMedCrossRefGoogle Scholar
  48. 48.
    Wynter CV, Walsh MD, Higuchi T, Leggett BA, Young J, Jass JR (2004) Methylation patterns define two types of hyperplastic polyp associated with colorectal cancer. Gut 53:573–580PubMedCrossRefGoogle Scholar
  49. 49.
    Nagasaka T, Sasamoto H, Notohara K et al (2004) Colorectal cancer with mutation in BRAF, KRAS, and wild-type with respect to both oncogenes showing different patterns of DNA methylation. J Clin Oncol 22:4584–4594PubMedCrossRefGoogle Scholar
  50. 50.
    Kumar K, Brim H, Giardiello F et al (2009) Distinct BRAF (V600E) and KRAS mutations in high microsatellite instability sporadic colorectal cancer in African Americans. Clin Cancer Res 15:1155–1161PubMedCrossRefGoogle Scholar
  51. 51.
    Samowitz WS, Albertsen H, Sweeney C et al (2006) Association of smoking, CpG island methylator phenotype, and V600E BRAF mutations in colon cancer. J Natl Cancer Inst 98:1731–1738PubMedCrossRefGoogle Scholar
  52. 52.
    Ajioka Y, Watanabe H, Jass JR, Yokota Y, Kobayashi M, Nishikura K (1998) Infrequent K-ras codon 12 mutation in serrated adenomas of human colorectum. Gut 42:680–684PubMedCrossRefGoogle Scholar
  53. 53.
    Sawyer EJ, Hanby AM, Rowan AJ et al (2002) The Wnt pathway, epithelial-stromal interactions, and malignant progression in phyllodes tumours. J Pathol 196:437–444PubMedCrossRefGoogle Scholar
  54. 54.
    O‘Brien MJ, Yang S, Mack C et al (2006) Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points. Am J Surg Pathol 30:1491–1501PubMedCrossRefGoogle Scholar
  55. 55.
    O‘Brien MJ, Yang S, Clebanoff JL et al (2004) Hyperplastic (serrated) polyps of the colorectum: relationship of CpG island methylator phenotype and K-ras mutation to location and histologic subtype. Am J Surg Pathol 28:423–434PubMedCrossRefGoogle Scholar
  56. 56.
    Yang S, Farraye FA, Mack C, Posnik O, O‘Brien MJ (2004) BRAF and KRAS Mutations in hyperplastic polyps and serrated adenomas of the colorectum: relationship to histology and CpG island methylation status. Am J Surg Pathol 28:1452–1459PubMedCrossRefGoogle Scholar
  57. 57.
    Jass JR, Baker K, Zlobec I et al (2006) Advanced colorectal polyps with the molecular and morphological features of serrated polyps and adenomas: concept of a 'fusion' pathway to colorectal cancer. Histopathology 49:121–131PubMedCrossRefGoogle Scholar
  58. 58.
    Chan TL, Zhao W, Leung SY, Yuen ST (2003) BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res 63:4878–4881PubMedGoogle Scholar
  59. 59.
    Spring KJ, Zhao ZZ, Karamatic R et al (2006) High prevalence of sessile serrated adenomas with BRAF mutations: a prospective study of patients undergoing colonoscopy. Gastroenterology 131:1400–1407PubMedCrossRefGoogle Scholar
  60. 60.
    Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418:934PubMedCrossRefGoogle Scholar
  61. 61.
    Brosens LAA, van Hattem A, Hylind LM et al (2007) Risk of colorectal cancer in juvenile polyposis. Gut 56:965–967PubMedCrossRefGoogle Scholar
  62. 62.
    Howe JR, Ringold JC, Summers RW, Mitros FA, Nishimura DY, Stone EM (1998) A gene for familial juvenile polyposis maps to chromosome 18q21.1. Am J Hum Genet 62:1129–1136PubMedCrossRefGoogle Scholar
  63. 63.
    Howe JR, Roth S, Ringold JC et al (1998) Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280:1086–1088PubMedCrossRefGoogle Scholar
  64. 64.
    Sweet K, Willis J, Zhou XP et al (2005) Molecular classification of patients with unexplained hamartomatous and hyperplastic polyposis. JAMA 294:2465–2473PubMedCrossRefGoogle Scholar
  65. 65.
    Howe JR, Haidle JL, Lal G et al (2007) ENG mutations in MADH4/BMPR1A mutation negative patients with juvenile polyposis. Clin Genet 71:91–92PubMedCrossRefGoogle Scholar
  66. 66.
    Grady WM, Carethers JM (2008) Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 135:1079–1099PubMedCrossRefGoogle Scholar
  67. 67.
    Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309PubMedCrossRefGoogle Scholar
  68. 68.
    Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700PubMedCrossRefGoogle Scholar
  69. 69.
    Goumans MJ, Valdimarsdottir G, Itoh S et al (2003) Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGF[beta]/ALK5 signaling. Mol Cell 12:817–828PubMedCrossRefGoogle Scholar
  70. 70.
    Imamura T, Takase M, Nishihara A et al (1997) Smad6 inhibits signalling by the tgf-beta superfamily. Nature 389:622–626PubMedCrossRefGoogle Scholar
  71. 71.
    Ebisawa T, Fukuchi M, Murakami G et al (2001) Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276:12477–12480PubMedCrossRefGoogle Scholar
  72. 72.
    Shi W, Sun C, He B et al (2004) GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor. J Cell Biol 164:291–300PubMedCrossRefGoogle Scholar
  73. 73.
    Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791PubMedCrossRefGoogle Scholar
  74. 74.
    Massague J (2008) TGFbeta in Cancer. Cell 134:215–230PubMedCrossRefGoogle Scholar
  75. 75.
    Kim YS, Yi YS, Choi SG, Kim SJ (1999) Development of TGF-beta resistance during malignant progression [review]. Arch Pharm Res 22:1–8PubMedCrossRefGoogle Scholar
  76. 76.
    Grady WM, Myeroff LL, Swinler SE et al (1999) Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res 59: 320–324PubMedGoogle Scholar
  77. 77.
    Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129PubMedCrossRefGoogle Scholar
  78. 78.
    Bhowmick NA, Chytil A, Plieth D et al (2004) TGF-{beta} signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851PubMedCrossRefGoogle Scholar
  79. 79.
    Cheng N, Chytil A, Shyr Y, Joly A, Moses HL (2008) Transforming growth factor-{beta} signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion. Mol Cancer Res 6:1521–1533PubMedCrossRefGoogle Scholar
  80. 80.
    Maggio-Price L, Treuting P, Zeng W, Tsang M, Bielefeldt-Ohmann H, Iritani BM (2006) Helicobacter infection is required for inflammation and colon cancer in Smad3-deficient mice. Cancer Res 66:828–838PubMedCrossRefGoogle Scholar
  81. 81.
    Kim BG, Li C, Qiao W et al (2006) Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441:1015–1019PubMedCrossRefGoogle Scholar
  82. 82.
    Shipitsin M, Campbell LL, Argani P et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273PubMedCrossRefGoogle Scholar
  83. 83.
    Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15:740–746PubMedCrossRefGoogle Scholar
  84. 84.
    Derynck R, Akhurst RJ (2007) Differentiation plasticity regulated by TGF-[beta] family proteins in development and disease. Nat Cell Biol 9:1000–1004PubMedCrossRefGoogle Scholar
  85. 85.
    Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedCrossRefGoogle Scholar
  86. 86.
    Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A (2006) Transforming growth factor-{beta} employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 174:175–183PubMedCrossRefGoogle Scholar
  87. 87.
    Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A (2008) HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem 283:33437–33446PubMedCrossRefGoogle Scholar
  88. 88.
    Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL (2005) Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307:1603–1609PubMedCrossRefGoogle Scholar
  89. 89.
    Seton-Rogers SE, Lu Y, Hines LM et al (2004) Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci USA 101:1257–1262PubMedCrossRefGoogle Scholar
  90. 90.
    Grady WM, Markowitz SD (2002) Genetic and epigenetic alterations in colon cancer. Annu Rev Genom Hum Genet 3:101–128CrossRefGoogle Scholar
  91. 91.
    Takayama T, Miyanishi K, Hayashi T, Sato Y, Niitsu Y (2006) Colorectal cancer: genetics of development and metastasis. J Gastroenterol 41:185–192PubMedCrossRefGoogle Scholar
  92. 92.
    Parsons R, Myeroff LL, Liu B et al (1995) Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res 55:5548–5550PubMedGoogle Scholar
  93. 93.
    Ilyas M, Efstathiou JA, Straub J, Kim HC, Bodmer WF (1999) Transforming growth factor beta stimulation of colorectal cancer cell lines: type II receptor bypass and changes in adhesion molecule expression. Proc Natl Acad Sci USA 96:3087–3091PubMedCrossRefGoogle Scholar
  94. 94.
    Grady WM, Willis JE, Trobridge P et al (2006) Proliferation and Cdk4 expression in microsatellite unstable colon cancers with TGFBR2 mutations. Int J Cancer 118:600–608PubMedCrossRefGoogle Scholar
  95. 95.
    Watanabe T, Wu TT, Catalano PJ et al (2001) Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 344:1196–1206PubMedCrossRefGoogle Scholar
  96. 96.
    Samowitz WS, Curtin K, Leppert MF, Slattery ML (2002) The prognostic implications of BAX and TGF[BETA]RII mutations in colon cancers with microsatellite instability. Mod Pathol 15:143AGoogle Scholar
  97. 97.
    Samowitz WS, Curtin K, Neuhausen S, Schaffer D, Slattery ML (2002) Prognostic implications of BAX and TGFBRII mutations in colon cancers with microsatellite instability. Genes Chromosomes Cancer 35:368–371PubMedCrossRefGoogle Scholar
  98. 98.
    Ku JL, Park SH, Yoon KA et al (2007) Genetic alterations of the TGF-beta signaling pathway in colorectal cancer cell lines: a novel mutation in Smad3 associated with the inactivation of TGF-beta-induced transcriptional activation. Cancer Lett 247:283–292PubMedCrossRefGoogle Scholar
  99. 99.
    Kaklamani VG, Hou N Bian Y et al (2003) TGFBR1*6A and cancer risk: a meta-analysis of seven case-control studies. J Clin Oncol 21:3236–3243PubMedCrossRefGoogle Scholar
  100. 100.
    Pasche B, Kaklamani VG, Hou N et al (2004) TGFBR1*6A and cancer: a meta-analysis of 12 case-control studies. J Clin Oncol 22:756–758PubMedCrossRefGoogle Scholar
  101. 101.
    Zhang HT, Zhao J, Zheng SY, Chen XF (2005) Is TGFBR1*6A really associated with increased risk of cancer? J Clin Oncol 23:7743–7744PubMedCrossRefGoogle Scholar
  102. 102.
    Liao RY, Mao C, Qiu LX, Ding H, Chen Q, Pan HF (2009) TGFBR1*6A/9A polymorphism and cancer risk: a meta-analysis of 13,662 cases and 14,147 controls. Mol Biol Rep (published online November 1, 2009)Google Scholar
  103. 103.
    Pasche B, Knobloch TJ, Bian Y et al (2005) Somatic acquisition and signaling of TGFBR1*6A in cancer. JAMA 294:1634–1646PubMedCrossRefGoogle Scholar
  104. 104.
    Bian Y, Knobloch TJ, Sadim M et al (2007) Somatic acquisition of TGFBR1*6A by epithelial and stromal cells during head and neck and colon cancer development. Hum Mol Genet 16:3128–3135PubMedCrossRefGoogle Scholar
  105. 105.
    Rosman DS, Phukan S, Huang CC, Pasche B (2008) TGFBR1*6A enhances the migration and invasion of MCF-7 breast cancer cells through RhoA activation. Cancer Res 68: 1319–1328PubMedCrossRefGoogle Scholar
  106. 106.
    Zeng Q, Phukan S, Xu Y et al (2009) Tgfbr1 haploinsufficiency is a potent modifier of colorectal cancer development. Cancer Res 69:678–686PubMedCrossRefGoogle Scholar
  107. 107.
    Valle L, Serena-Acedo T, Liyanarachchi S et al (2008) Germline allele-specific expression of TGFBR1 confers an increased risk of colorectal cancer. Science 321:1361–1365PubMedCrossRefGoogle Scholar
  108. 108.
    Thiagalingam S, Lengauer C, Leach FS et al (1996) Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet 13:343–346PubMedCrossRefGoogle Scholar
  109. 109.
    Takagi Y, Kohmura H, Futamura M et al (1996) Somatic alterations of the dpc4 gene in human colorectal cancers in vivo. Gastroenterology 111:1369–1372PubMedCrossRefGoogle Scholar
  110. 110.
    Ando T, Sugai T, Habano W, Jiao YF, Suzuki K (2005) Analysis of SMAD4/DPC4 gene alterations in multiploid colorectal carcinomas. J Gastroenterol 40:708–715PubMedCrossRefGoogle Scholar
  111. 111.
    Salovaara R, Roth S, Loukola A et al (2002) Frequent loss of SMAD4/DPC4 protein in colorectal cancers. Gut 51:56–59PubMedCrossRefGoogle Scholar
  112. 112.
    Eppert K, Scherer SW, Ozcelik H et al (1996) Madr2 maps to 18q21 and encodes a tgfbeta-regulated mad-related protein that is functionally mutated in colorectal carcinoma. Cell 86:543–552PubMedCrossRefGoogle Scholar
  113. 113.
    Yang X, Li CL, Xu XL, Deng CX (1998) The tumor suppressor smad4/dpc4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci USA 95: 3667–3672PubMedCrossRefGoogle Scholar
  114. 114.
    Weinstein M, Yang X, Deng C (2000) Functions of mammalian Smad genes as revealed by targeted gene disruption in mice. Cytokine Growth Factor Rev 11:49–58PubMedCrossRefGoogle Scholar
  115. 115.
    Mishra L, Shetty K, Tang Y, Stuart A, Byers SW (2005) The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene 24:5775–5789PubMedCrossRefGoogle Scholar
  116. 116.
    Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin MF, Taketo MM (1998) Intestinal tumorigenesis in compound mutant mice of both dpc4 (Smad4) and apc genes. Cell 92:645–656PubMedCrossRefGoogle Scholar
  117. 117.
    Kitamura T, Kometani K, Hashida H et al (2007) SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat Genet 39:467–475PubMedCrossRefGoogle Scholar
  118. 118.
    Maitra A, Krueger JE, Tascilar M et al (2000) Carcinoid tumors of the extrahepatic bile ducts: a study of seven cases. Am J Surg Pathol 24:1501–1510PubMedCrossRefGoogle Scholar
  119. 119.
    Isaksson-Mettavainio M, Palmqvist R, Forssell J, Stenling R, Oberg A (2006) SMAD4/DPC4 expression and prognosis in human colorectal cancer. Anticancer Res 26:507–510PubMedGoogle Scholar
  120. 120.
    Alazzouzi H, Alhopuro P, Salovaara R et al (2005) SMAD4 as a prognostic marker in colorectal cancer. Clin Cancer Res 11:2606–2611PubMedCrossRefGoogle Scholar
  121. 121.
    Boulay JL, Mild G, Lowy A et al (2002) SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer. Br J Cancer 87:630–634PubMedCrossRefGoogle Scholar
  122. 122.
    Sjoblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274PubMedCrossRefGoogle Scholar
  123. 123.
    Zhu YA, Richardson JA, Parada LF, Graff JM (1998) Smad3 mutant mice develop metastatic colorectal cancer. Cell 94:703–714PubMedCrossRefGoogle Scholar
  124. 124.
    Sodir NM, Chen X, Park Ret al (2006) Smad3 deficiency promotes tumorigenesis in the distal colon of ApcMin/+ mice. Cancer Res 66:8430–8438PubMedCrossRefGoogle Scholar
  125. 125.
    Datto MB, Frederick JP, Pan LH, Borton AJ, Zhuang Y, Wang XF (1999) Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol Cell Biol 19:2495–2504PubMedGoogle Scholar
  126. 126.
    Yang X, Letterio JJ, Lechleider RJ et al (1999) Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 18:1280–1291PubMedCrossRefGoogle Scholar
  127. 127.
    Maggio-Price L, Treuting P, Bielefeldt-Ohmann H et al (2009) Bacterial infection of Smad3/Rag2 double-null mice with transforming growth factor-beta dysregulation as a model for studying inflammation-associated colon cancer. Am J Pathol 174:317–329PubMedCrossRefGoogle Scholar
  128. 128.
    He XC, Zhang J, Tong WG et al (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-[beta]-catenin signaling. Nat Genet 36:1117–1121PubMedCrossRefGoogle Scholar
  129. 129.
    Hardwick JC, Kodach LL, Offerhaus GJ, van den Brink GR (2008) Bone morphogenetic protein signalling in colorectal cancer. Nat Rev Cancer 8:806–812PubMedCrossRefGoogle Scholar
  130. 130.
    Loh K, Chia JA, Greco S et al (2008) Bone morphogenic protein 3 inactivation is an early and frequent event in colorectal cancer development. Genes Chromosomes Cancer 47:449–460PubMedCrossRefGoogle Scholar
  131. 131.
    Motoyama K, Tanaka F, Kosaka Y et al (2008) Clinical significance of BMP7 in human colorectal cancer. Ann Surg Oncol 15:1530–1537PubMedCrossRefGoogle Scholar
  132. 132.
    Deng H, Ravikumar TS, Yang WL (2009) Overexpression of bone morphogenetic protein 4 enhances the invasiveness of Smad4-deficient human colorectal cancer cells. Cancer Lett 281:220–231PubMedCrossRefGoogle Scholar
  133. 133.
    Kodach LL, Wiercinska E, de Miranda NF et al (2008) The bone morphogenetic protein pathway is inactivated in the majority of sporadic colorectal cancers. Gastroenterology 134:1332–1341PubMedCrossRefGoogle Scholar
  134. 134.
    Kodach LL, Wiercinska E, de Miranda NF et al (2008) The bone morphogenetic protein pathway is inactivated in the majority of sporadic colorectal cancers. Gastroenterology 134:1332–1341PubMedCrossRefGoogle Scholar
  135. 135.
    Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810PubMedCrossRefGoogle Scholar
  136. 136.
    Cerutti JM, Ebina KN, Matsuo SE, Martins L, Maciel RM, Kimura ET (2003) Expression of Smad4 and Smad7 in human thyroid follicular carcinoma cell lines. J Endocrinol Invest 26:516–521PubMedGoogle Scholar
  137. 137.
    Dowdy SC, Mariani A, Reinholz MM et al (2005) Overexpression of the TGF-beta antagonist Smad7 in endometrial cancer. Gynecol Oncol 96:368–373PubMedCrossRefGoogle Scholar
  138. 138.
    Zhu Q, Krakowski AR, Dunham EE et al (2007) Dual role of SnoN in mammalian tumorigenesis. Mol Cell Biol 27:324–339PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Hematology/Oncology, Department of Medicine UAB Comprehensive Cancer CenterThe University of AlabamaBirminghamUSA

Personalised recommendations