Lab-on-a-Chip Biosensors

  • Jeong-Yeol Yoon


In the previous chapter, we learned that both optical and electrochemical immunosensors can be implemented in a microchannel to facilitate rinsing steps that are labor-intensive and require a skilled operator. In fact, there have been attempts to provide a higher level of automation and to increase ease of use immunosensors (and certainly other biosensors as well), through fabricating more complicated microchannels. These attempts have usually been achieved by utilizing a concept known as lab-on-a-chip.


Polymerase Chain Reaction Polymerase Chain Reaction Assay Soft Lithography Defense Advance Research Project Agency Electrochemical Immunosensors 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Microfluidics (Section 13.1)

  1. Haeberlea S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1081–1220CrossRefGoogle Scholar
  2. Hogan J (2006) A little goes a long way. Nature 442:351–352CrossRefGoogle Scholar
  3. Lee SJ, Lee SY (2004) Micro total analysis system (μ-TAS) in biotechnology. Appl Microbiol Biotechnol 64:289–299CrossRefGoogle Scholar
  4. Sin MLY, Gao J, Liao JC, Wong PK (2011) System integration—a major step toward lab on a chip. J Biol Eng 5:6CrossRefGoogle Scholar
  5. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar

Photolithography and Soft Lithography (Section 13.2)

  1. Saliterman SS (2006) Fundamentals of BioMEMS and medical microdevices. SPIE, BellinghamGoogle Scholar
  2. Madou MJ (2002) Fundamentals of microfabrication, 2nd edn. CRC, Boca RatonGoogle Scholar

CE in LOC (Section 13.3)

  1. Chabinyc ML, Chiu DT, McDonald JC, Stroock AD, Christian JF, Karger AM, Whitesides GM (2001) An integrated fluorescence detectiodetection system in poly(dimethylsiloxane) for microfluidic applications. Anal Chem 73:4491–4498CrossRefGoogle Scholar
  2. Gerlach A, Knebel G, Guber AE, Heckele M, Herrmann D, Muslija A, Sshaller T (2002) Microfabrication of single-use plastic microfluidic devices for high-throughput screening and DNA analysis. Microsyst Technol 7:265–268CrossRefGoogle Scholar
  3. Locascio LE, Perso CE, Lee CS (1999) Measurement of electroosmotic flow in plastic imprinted microfluidic devices and the effect of protein adsorption on flow rate. J Chromatogr A 857:275–284CrossRefGoogle Scholar

POCT in LOC (Section 13.4)

  1. Ducrée J (2009) Next-generation microfluidic lab-on-a-chip platforms for point-of-care diagnostics and systems biology. Procedia Chem 1:517–520CrossRefGoogle Scholar
  2. Fu E, Chinowsky T, Nelson K, Johnston K, Edwards T, Helton K, Grow M, Miller JW, Yager P (2007) SPR imaging-based salivary diagnostics system for the detection of small molecule analytes. Ann NY Acad Sci 1098:335–344 [Fig. 13.14]CrossRefGoogle Scholar
  3. Waggoner P, Craighead H (2007) Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip 7:1238–1255CrossRefGoogle Scholar
  4. Weibel DB, Kruithof M, Potenta S, Sia SK, Lee A, Whitesides GM (2005) Torque-actuated valves for microfluidics. Anal Chem 77:4726–4733 [Fig. 13.13]CrossRefGoogle Scholar
  5. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418CrossRefGoogle Scholar

IME Immunosensor in LOC (Section 13.4)

  1. Ko S, Kim B, Jo S-S, Oh SY, Park J-K (2007) Electrochemical detection of cardiac troponin I using a microchip with the surface-functionalized poly(dimethylsiloxane) channel. Biosens Bioelectron 23:51–59CrossRefGoogle Scholar
  2. Varshney M, Li Y (2009) Review: Interdigitated array microelectrodes based impedance biosensor for detection of bacterial cells. Biosens Bioelectron 24:2951–2960CrossRefGoogle Scholar
  3. Yang L, Li Y, Griffis CL, Johnson MG (2004) Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella Typhimurium. Biosens Bioelectron 19:1139–1147CrossRefGoogle Scholar

Optical Fibers in LOC (Section 13.5)

  1. Kuswandi B, Huskens J, Verboom W (2007) Optical sensing systems for microfluidic devices: A review. Anal Chim Acta 601:141–155CrossRefGoogle Scholar
  2. Lucas LJ, Han J-H, Chesler J, Yoon J-Y (2007) Latex immunoagglutination for a vasculitis marker in a microfluidic device using static light scattering detection. Biosens Bioelectron 22:2216–2222CrossRefGoogle Scholar
  3. Han J-H, Heinze BC, Yoon J-Y (2008) Single cell level detection of Escherichia coli in microfluidic device. Biosens Bioelectron 23:1303–1306CrossRefGoogle Scholar
  4. Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386CrossRefGoogle Scholar
  5. Yoon J-Y (2008) Latex immunoagglutination assay in lab-on-a-chip. Biol Eng 1:79–84 [Fig. 13.15]Google Scholar

Lab-on-a-CD (Section 13.6)

  1. Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Lab on a CD. Ann Rev Biomed Eng 8:601–628CrossRefGoogle Scholar

Mixing in LOC (Section 13.7)

  1. Tabeling P (2009) A brief introduction to slippage, droplets and mixing in microfluidic systems. Lab Chip 9:2428–2436CrossRefGoogle Scholar

Cell Phone in LOC (Section 13.8)

  1. Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A (2011) Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem 83:6641–6647 [Fig. 13.20]CrossRefGoogle Scholar

Single Molecule Analysis in LOC (Section 13.9)

  1. Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442:387–393CrossRefGoogle Scholar

Chemical Analysis in LOC (Section 13.9)

  1. deMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402CrossRefGoogle Scholar
  2. Feng X, Du W, Luo Q, Liu B-F (2009) Microfluidic chip: Next-generation platform for systems biology. Anal Chim Acta 650:83–97CrossRefGoogle Scholar
  3. Janasek D, Franzke J, Manz A (2006) Scaling and the design of miniaturized chemical-analysis systems. Nature 442:374–380CrossRefGoogle Scholar

MALDI TOF MS in LOC (Section 13.9)

  1. Wheeler AR, Moon H, Kim C-J, Loo JA, Garrell RL (2004) Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 76:4833–4838CrossRefGoogle Scholar
  2. Wheeler AR, Moon H, Bird CA, Loo RRO, Kim C-J, Loo JA, Garrell RL (2005) Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS. Anal Chem 77:534–540CrossRefGoogle Scholar

Cell-on-a-Chip (Section 13.98)

  1. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411CrossRefGoogle Scholar

LIA in LOC (Further Study)

  1. Heinze BC, Gamboa JR, Kim K, Song J-Y, Yoon J-Y (2010) Microfluidic immunosensor with integrated liquid core waveguides for sensitive Mie scattering detection of avian influenza antigens in a real biological matrix. Anal Bioanal Chem 398:2693–2700CrossRefGoogle Scholar
  2. Heinze BC, Yoon J-Y (2011) Nanoparticle immunoagglutination Rayleigh scatter assay to complement microparticle immuno-agglutination Mie scatter assay in a microfluidic device. Colloids Surf B 85:168–173CrossRefGoogle Scholar
  3. Song J-Y, Lee C-H, Choi E-J, Kim K, Yoon J-Y (2011) Sensitive Mie scattering immunoagglutination assay of porcine reproductive and respiratory syndrome virus (PRRSV) from lung tissue samples in a microfluidic chip. J Virol Meth 178:31–38 [Fig. 13.28]CrossRefGoogle Scholar
  4. You DJ, Geshell KJ, Yoon J-Y (2011a) Direct and sensitive detection of foodborne pathogens within fresh produce samples using a field-deployable handheld device. Biosens Bioelectron 28:399–406CrossRefGoogle Scholar

Droplet LOC (Further Study)

  1. Belder D (2005) Microfluidics with droplets. Angew Chem Int Ed 44:3521–3522CrossRefGoogle Scholar
  2. Berthier J, Silberzan P (2006) Microfluidics for biotechnology. Artech House, NorwoodGoogle Scholar
  3. Cho SK, Moon H, Kim C-J (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80CrossRefGoogle Scholar
  4. Egatz-Gomez A, Melle S, Garcia AA, Lindsay SA, Marquez M, Dominguez-Garcia P, Rubio MA, Picraux ST, Taraci JL, Clement T, Yang D, Hayes MA, Gust D (2006) Discrete magnetic microfluidics. Appl Phys Lett 89:034106CrossRefGoogle Scholar
  5. Joanicot M, Ajdari A (2005) Droplet control for microfluidics. Science 309:887–888CrossRefGoogle Scholar
  6. Yoon J-Y, Garrell RL (2003) Preventing biomolecular adsorption in electrowetting-based biofluidic chips. Anal Chem 75:5097–5102CrossRefGoogle Scholar
  7. Yoon J-Y, You DJ (2008) Backscattering particle immunoassays in wire-guide droplet manipulations. J Biol Eng 2:15CrossRefGoogle Scholar

Microchannel PCR (Further Study)

  1. Huang FC, Liao CS, Lee GB (2006) An integrated microfluidic chip for DNA/RNA amplification, electrophoresis separation and on-line optical detection. Electrophoresis 27:3297–3305CrossRefGoogle Scholar
  2. Kopp MU, de Mello AJ, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280:1046–1048CrossRefGoogle Scholar
  3. Lien KY, Lee WC, Lei HY, Lee GB (2007) Integrated reverse transcription polymerase chain reaction systems for virus detection. Biosens Bioelectron 22:1739–1748CrossRefGoogle Scholar
  4. Mohr S, Zhang Y-H, Macaskill A, Day PJR, Barber RW, Goddard NJ, Emerson DR, Fielden PR (2007) Numerical and experimental study of a droplet-based PCR chip. Microfluid Nanofluid 3:611–621CrossRefGoogle Scholar
  5. Pal R, Yang M, Lin R, Johnson BN, Srivastava N, Razzacki SZ, Chomistek KJ, Heldsinger DC, Haque RM, Ugaz VM, Thwar PK, Chen Z, Alfano K, Yim MB, Krishnan M, Fuller AO, Larson RG, Burke DT, Burns MA (2005) An integrated microfluidic device for influenza and other genetic analyses. Lab Chip 5:1024–1032CrossRefGoogle Scholar

Droplet PCR (Further Study)

  1. Chang Y-H, Lee G-B, Huang F-C, Chen Y-Y, Lin J-L (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdevices 8:215–225CrossRefGoogle Scholar
  2. Ohashi T, Kuyama H, Hanafusa N, Togawa Y (2007) A simple device using magnetic transportation for droplet-based PCR. Biomed Microdevices 9:695–702CrossRefGoogle Scholar
  3. You DJ, Tran PL, Kwon H-J, Patel D, Yoon J-Y (2011b) Very quick reverse transcription polymerase chain reaction for detecting 2009 H1N1 influenza A using wire-guide droplet manipulations. Faraday Discuss 149:159–170CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jeong-Yeol Yoon
    • 1
  1. 1.Department of Agricultural and Biosystems Engineering Department of Biomedical Engineering BIO5 InstituteUniversity of ArizonaTucsonUSA

Personalised recommendations