Advertisement

Microbeams

  • Mohammad I. Younis
Chapter
Part of the Microsystems book series (MICT, volume 20)

Abstract

Microbeams are perhaps the most commonly used structural component in MEMS. Microbeams form the backbone of a wide range of devices including resonators, resonant sensors, actuators, filters, atomic force microscope probes, and RF switches . They are also used as spring elements with other microstructures and MEMS components, such as comb-drive actuators. Because of their special place in MEMS, this chapter deals with the static and dynamic behavior and phenomena of microbeams in some depth.

Keywords

Residual Stress Axial Force Cantilever Beam Fundamental Natural Frequency Cantilever Microbeam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Meirovitch L (2001) Fundamentals of Vibrations. McGraw Hill, New YorkGoogle Scholar
  2. 2.
    Rao S S (2004) Mechanical Vibrations. Fourth Edition, Prentice Hall, New JerseyGoogle Scholar
  3. 3.
    Beer F, Johnston R, DeWolf J, and Mazurek D (2008) Mechanics of materials. McGraw-Hill, New YorkGoogle Scholar
  4. 4.
    Krylov S, and Maimon R (2004) Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force, ASME Journal of Vibrations and Acoustics, 126(3):332–342CrossRefGoogle Scholar
  5. 5.
    Timoshenko S (1983) Strength of materials, Third edition, Krieger Pub Co, Malabar, FloridaGoogle Scholar
  6. 6.
    Shames I H and Pitarresi J M (1999) Introduction to solid mechanics. Third Edition, Prentice Hall, New JerseyGoogle Scholar
  7. 7.
    Senturia S D (2001) Microsystem design. Springer, New YorkGoogle Scholar
  8. 8.
    Fang W and Wickert J A (1996) Determining mean and gradient residual stresses in thin films using micromachined cantilevers. Journal of Micromechanics and Microengineering. 6:301–309CrossRefGoogle Scholar
  9. 9.
    Chu W H and Mehregany M (1993) A study of residual stress distribution through the thickness of p +silicon films. IEEE Transactions on Electron Devices, 40 (7):1245-1250CrossRefGoogle Scholar
  10. 10.
    Madou M J (2002) Fundamentals of Microfabrication: The Science of Miniaturization. CRC, BostonGoogle Scholar
  11. 11.
    Bouwstra S and Geijselaers B (1991) On the resonance frequencies of microbridges,” in Proceedings of the 6th International Conference on Solid-State Sensors and Actuators (TRANSDUCERS ’91), San Francisco, CA, IEEE, New York, 2: 1141–1144Google Scholar
  12. 12.
    Meng Q, Mehregany M and Mullen R (1993) Theoretical modeling of microfabricated beams with elastically restrained supports. Journal of Microelectromechanical Systems 2:128–137CrossRefGoogle Scholar
  13. 13.
    Jensen B D, Bitsie F, and de Boer M P (1991) Interferometric measurement for improved understanding of boundary effects in micromachined beams. in proceedings of. SPIE Measurement Techniques II, Vol. 3875, doi:10.1117/12.360480, Santa Clara, CA, USAGoogle Scholar
  14. 14.
    Kobrinsky M J, Deutsch E R, and Senturia S D (2000) Effect of support compliance and residual stress on the shape of doubly supported surface-micromachined beams. Journal of Microelectromechanical Systems, 9:361-369CrossRefGoogle Scholar
  15. 15.
    Lishchynska M, Cordero N, Slattery O, and O’Mahony C (2005) Modelling electrostatic behaviour of microcantilevers incorporating residual stress gradient and non-ideal anchors. Journal of Micromechanics and Microengineering. 15(7): S10, doi: 10.1088/0960-1317/15/7/002CrossRefGoogle Scholar
  16. 16.
    Rinaldi G, Packirisamy M, and Stiharu I (2006) Boundary characterization of microstructures through thermo-mechanical testing. Journal of Micromechanics and Microengineering. 16:549–556CrossRefGoogle Scholar
  17. 17.
    Balachandran B, Magrab E (2009) Vibrations. Second Edition, Cengage Learning, TorontoGoogle Scholar
  18. 18.
    Chiao M and Lin L (2000) Self-buckling of micromachined beams under resistive heating. Journal of Microelectromechanical Systems, 9(1):146-151CrossRefGoogle Scholar
  19. 19.
    Abu-Salih S and Elata D (2006) Experimental validation of electromechanical buckling. Journal of Microelectromechanical Systems, 15 (6): 1656- 1662.CrossRefGoogle Scholar
  20. 20.
    Fang W and Wickert J A (1994) Post-buckling of micromachined beams. Journal of Micromechanics and Microengineering, 4:116–22CrossRefGoogle Scholar
  21. 21.
    Shaker F J (1975) Effect of axial load on mode shapes and frequencies of beams. NASA Lewis Research Center Report NASA-TN-7098Google Scholar
  22. 22.
    Bokaian A (1988) Natural frequencies of beams under compressive axial loads. Journal of Sound and Vibration 126: 49-56CrossRefGoogle Scholar
  23. 23.
    Inman D J (2008) Engineering Vibration. Prentice Hall, New Jersey, Third EditionGoogle Scholar
  24. 24.
    Nayfeh A and Pai F (2004) Linear and Nonlinear Structural Mechanics. Wiley and Sons, New YorkMATHCrossRefGoogle Scholar
  25. 25.
    Reddy J N (2002) Energy Principles and Variational Methods in Applied Mechanics. Wiley and Sons, New YorkGoogle Scholar
  26. 26.
    Nayfeh A H, Younis M I, and Abdel-Rahman E M (2005) Reduced-order models for MEMS applications. Nonlinear Dynamics, 41: 211--236MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Younis M I, Abdel-Rahman E M, and Nayfeh A H (2003) A reduced-order model for electrically actuated microbeam-based MEMS. Journal of Microelectromechanical Systems, 12:672-680CrossRefGoogle Scholar
  28. 28.
    Tilmans H A, Elwespoek M and Fluitman J H (1992) Microresonant force gauges. Sensors Actuators A 30: 35–53CrossRefGoogle Scholar
  29. 29.
    Zook J D and Burns D W (1992) Characteristics of polysilicon resonant microbeams. Sensors Actuators A 35: 51–9CrossRefGoogle Scholar
  30. 30.
    Ijntema D J and Tilmans H A (1992) Static and dynamic aspects of an air-gap capacitor. Sensors Actuators A 35: 121–8CrossRefGoogle Scholar
  31. 31.
    Tilmans H A and Legtenberg R (1994) Electrostatically driven vacuum-encapsulated polysilicon resonators: Part II. Theory and performance. Sensors Actuators A 45: 67–84CrossRefGoogle Scholar
  32. 32.
    Ahn Y, Guckel H and Zook J D (2001) Capacitive microbeam resonator design. Journal of Micromechanics and Microengineering, 11: 70–80CrossRefGoogle Scholar
  33. 33.
    Abdel-Rahman E M, Younis M, and Nayfeh A H (2002) Characterization of the mechanical behavior of an electrically actuated microbeam. Journal of Micromechanics and Microengineering, 12: 759-766CrossRefGoogle Scholar
  34. 34.
    Hung E S and Senturia S D (1991) Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulations runs. Journal of Microelectromechanical Systems, 8: 280-289CrossRefGoogle Scholar
  35. 35.
    Younis M I and Nayfeh A H (2003) A study of the nonlinear response of a resonant microbeam to an electric actuation. Journal of Nonlinear Dynamics, 91:117Google Scholar
  36. 36.
    Nayfeh A H, Younis M I, and Abdel-Rahman E M (2007) Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dynamics, 48: 153-163MATHCrossRefGoogle Scholar
  37. 37.
    Nayfeh A H and Younis M I (2005) Dynamics of MEMS resonators under superharmonic and subharmonic excitations. Journal of Micromechanics and Microengineering, 15:1840-1847CrossRefGoogle Scholar
  38. 38.
    Alsaleem F, Younis M I, Ouakad H (2009) On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. Journal of Micromechanics and Microengineering, 19:045013(1-14)Google Scholar
  39. 39.
    Alsaleem F M, Younis M I, and Ruzziconi L (2010) An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. Journal of Microelectromechanical Systems, 19 (4): 1 -13CrossRefGoogle Scholar
  40. 40.
    Younis M I, and Alsaleem F M (2009) Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. Journal of Computational and Nonlinear Dynamics, 4 (2),doi:10.1115/1.3079785, 15 pagesCrossRefGoogle Scholar
  41. 41.
    Binning G, Quate C F, and Gerber C (1986) Atomic force microscope. Physical Review Letters 56: 930–933.CrossRefGoogle Scholar
  42. 42.
    Abdel-Rahman E M, and Nayfeh A H (2005) Contact force identification using the subharmonic resonance of a contact-mode atomic force microscopy. Nanotechnology, 16: 199-207CrossRefGoogle Scholar
  43. 43.
    Abramovitch D Y, Andersson S B, Lucy Y P, and Schitter G (2007) A tutorial on the mechanisms, dynamics, and control of atomic force microscopes. proceedings of the 2007 American Control Conference, Marriott Marquis Hotel at Times Square, New York City, 11–13, 2007.Google Scholar
  44. 44.
    Albrecht T R, Grutter P, Horne D, and Rugar D (1991) Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. Journal of Applied Physics, 69 (2)Google Scholar
  45. 45.
    Arafat H N, Nayfeh A H, and Abdel-Rahman E M (2008) Modal interactions in contact-mode atomic force microscopes. Nonlinear Dynamics, 54 (1,2): 151-166MATHCrossRefGoogle Scholar
  46. 46.
    Arjmand M T, Sadeghian H, Salarieh H, and Alasty A (2008) Chaos control in AFM systems using nonlinear delayed feedback via sliding mode control. Nonlinear Analysis: Hybrid systems, 2: 993-1001MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Ashhab M, Salapaka M V, Dahleh M, and Mezic I (1997) Control of chaos in atomic force microscopes. proceedings of the American Control Conference, Albuquerque, New Mexico, June 1997Google Scholar
  48. 48.
    Ashhab M, Salapaka M V, Dahleh M, and Mezic I (1991) Dynamical analysis and control of microcantilevers. Automatica, 35: 1663-1670CrossRefGoogle Scholar
  49. 49.
    Ashhab M, Salapaka M V, Dahleh M, and Mezic I (1999) Melnikov-based dynamical analysis of microcantilevers in scanning probe microscopy. Nonlinear Dynamics, 20: 197-220MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Basso M, Giarre L, Dahleh M, and Mezic I (2000) Complex dynamics in a harmonically excited Lennard-Jones oscillator: Microcantilever-sample interaction in scanning probe microscopes. Journal of Dynamic Systems, Measurement, and Control, 122: 240-245CrossRefGoogle Scholar
  51. 51.
    Burnham N A, Kulik A J, and Gremaud G (1995) Nanosubharmonics: The dynamics of small nonlinear contacts. Physical Review Letters, 74 (25): 5092-5095CrossRefGoogle Scholar
  52. 52.
    Chen L, Yu X, and Wang D (2007) Cantilever dynamics and quality factor control in AC mode AFM height measurements. Ultramicroscopy, 107: 275-280CrossRefGoogle Scholar
  53. 53.
    Coururier G, Boisgard R, Nony L, and Aime J P (2003) Noncontact atomic force microscopy: Stability criterion and dynamical responses of the shift of frequency and damping signal. Review of Scientific Instruments, 74 (5): 2726-2734CrossRefGoogle Scholar
  54. 54.
    Dankowicz H (2006) Nonlinear dynamics as an essential tool for non-destructive characterization of soft nanostructures using tapping-mode atomic force microscopy. Philosophical Transaction of the Royal Society A., 364, 3505-3520 doi: 10.1098/rsta.2006.1907MATHCrossRefGoogle Scholar
  55. 55.
    Dankowicz H, Zhao X, and Misra S (2007) Near-grazing dynamics in tapping-mode atomic-force microscopy. International Journal of Non-Linear Mechanics, 42: 697-709CrossRefGoogle Scholar
  56. 56.
    Farrokhpayam A, and Fathipour M (2009) Modeling and dynamic analysis of atomic force microscope based on Euler-Bernoulli beam theory. Digital Journal of Nanomaterials and Biostructures, 4 (4): 789-801Google Scholar
  57. 57.
    Garcia R, and San Paulo A (1991) Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Physical Review B, 60 (7): 4961-4967CrossRefGoogle Scholar
  58. 58.
    Garcia R, and San Paulo A (2000) Dynamics of a vibrating tip near or in intermittent contact with a surface. Physical Review B, 61(20): R13381-R13384CrossRefGoogle Scholar
  59. 59.
    Garcia R, and Perez R (2001) Dynamic atomic force microscopy methods. Surface Science Reports, 47: 197-301CrossRefGoogle Scholar
  60. 60.
    Gauthier M, Sasaki N, and Tsukada M (2001) Dynamics of the cantilever in noncontact dynamic force microscopy: The steady-state approximation and beyond. Physical Review B, 64:085409CrossRefGoogle Scholar
  61. 61.
    Giessibl F J (1997) Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Physical Review B., 56(24): 16010-16015CrossRefGoogle Scholar
  62. 62.
    Giessibl F J (2001) A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy. Applied Physics Letters, 78 (1): 123-125CrossRefGoogle Scholar
  63. 63.
    Giessibl F J (2003) Advances in atomic force microscopy. Reviews of Modern Physics, 75: 949-984CrossRefGoogle Scholar
  64. 64.
    Ha J, Fung K, and Chen Y (2005) Dynamic responses of an atomic force microscope interacting with samples. Journal of Dynamic systems, Measurement, and Control, 127: 705-709CrossRefGoogle Scholar
  65. 65.
    Hornstein S and Gottlieb O (2008) Nonlinear dynamics, stability, and control of the scan process in noncontacting atomic force microscopy. Nonlinear Dynamics, 54: 93-122MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Hu S and Raman A (2006) Chaos in atomic force microscopy. Physical Review Letters, 96, doi:10.1103/96.036107Google Scholar
  67. 67.
    Jalili N and Laxminarayana k,(2004) A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics, 14: 907-945CrossRefGoogle Scholar
  68. 68.
    Jamitzky F and Stark R W (2010) Intermittency in amplitude modulated dynamic atomic force microscopy. Ultramicroscopy, 110: 618-621CrossRefGoogle Scholar
  69. 69.
    Korayem M H, Zafari S, Amanati A, Damircheli M, and Ebrahimi, N (2010) Analysis and control of micro-cantilever in dynamic mode AFM. The International Journal of Advanced Manufacturing Technology, doi:.1007/s00170-010-2588-4Google Scholar
  70. 70.
    Kühle A, Sorenson A H, Zandbergen J B, and Bohr J (1998) Contrast artifacts in tapping tip atomic force microscopy. Applied Physics A 66: S329–S33.CrossRefGoogle Scholar
  71. 71.
    Lee S I, Howell S W, Raman A, and Reifenberger R (2002) Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment. Physical Review B, 66: 115409, 2002CrossRefGoogle Scholar
  72. 72.
    Marth M, Maier D, Honerkamp J, Brandsch R, and Bar G (1991) A unifying view on some experimental effects in tapping-mode atomic force microscopy. Journal of Applied Physics, 85 (10): 7030-7036CrossRefGoogle Scholar
  73. 73.
    Martin Y, Williams C C, and Wickramasinghe H K (1987) Atomic force microscope’force mapping and profiling on a sub 100-Å scale. Journal of Applied Physics, 61: 4723–4729CrossRefGoogle Scholar
  74. 74.
    Pai N, Wang C, and Lin D T (2010) Bifurcation analysis of a microcantilever in AFM system. Journal of Franklin Institute, 347: 1353-1367MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Payam A F and Fathipour M (2009) Modeling and dynamic analysis of atomic force microscope based on Euler-Bernoulli beam theory. Digest Journal of Nanomaterial and Biostructures, 4: 789-801Google Scholar
  76. 76.
    Rabe U, Janser K, and Arnold W (1996) Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment. Review of Scientific Instruments, 67 (9): 3281-3293CrossRefGoogle Scholar
  77. 77.
    Rabe U, Turner J, and Arnold W (1998) Analysis of the high-frequency response of atomic force microscope cantilever. Applied Physics A, 66: S277-S282CrossRefGoogle Scholar
  78. 78.
    Rodriguez T R and Garcia R (2002) Tip motion in amplitude modulation (tapping-mode) atomic-force microscopy: Comparison between continuous and point-mass models. Applied Physics Letters, 80(9): 1646-1648CrossRefGoogle Scholar
  79. 79.
    Rützel S, Lee S I, and Raman A (2003) Nonlinear dynamics of atomic-force-microscope probes driven in Lennard-Jones potentials. Proceedings of the Royal Society A, 459: 1925-1948Google Scholar
  80. 80.
    Santos S, Barcons V, Font J, and Thomson, N H (2010) Cantilever dynamics in amplitude modulation AFM: continuous and discontinuous transitions. Journal of Physics D: Applied Physics, 43: 275401, doi: 10.1088/0022-3727/43/27/275401CrossRefGoogle Scholar
  81. 81.
    Sarid D, Ruskell T G, Workman R K, and Chen D (1996) Driven nonlinear atomic force microscopy cantilevers: From noncontact to tapping modes of operation. Journal of Vacuum Science & Technology B, 14(2): 864-867CrossRefGoogle Scholar
  82. 82.
    Schitter G, Menold P, Knapp H F, Allgower F, and Stemmer A (2001) High performance feedback for fast scanning atomic force microscopes. Review of Scientific Instruments, 72 (8): 3320-3327CrossRefGoogle Scholar
  83. 83.
    Sebastian A, Salapaka M V, and Chen D J (2001) Harmonic and power balance tools for tapping-mode atomic force microscope. Journal of Applied Physics, 89 (11): 6473-6480CrossRefGoogle Scholar
  84. 84.
    Sebastian A, Salapaka M V, Chen D J, and Cleveland J P (1991) Harmonic analysis based modeling of tapping-mode AFM. Proceedings of the American Control Conference, San Diego, CaliforniaGoogle Scholar
  85. 85.
    Song Y and Bhushan B (2008) Atomic force microscopy dynamic modes: modeling and applications. Journal of Physics: Condensed Matter, Vol. 20, doi: 10.1088/0953-8984/20/22/225012Google Scholar
  86. 86.
    Stark R W, and Heckl W M (2000) Fourier transformed atomic force microscopy: tapping mode atomic force microscopy beyond the Hookian approximation. Surface Science, 457: 219-228CrossRefGoogle Scholar
  87. 87.
    Turner J A, Hirsekorn S, Rabe U, and Arnold W (1997) High-frequency response of atomic-force microscope cantilevers. Journal of Applied Physics, 82 (3): 966-979CrossRefGoogle Scholar
  88. 88.
    Turner J A (2004) Non-linear vibrations of a beam with cantilever-Hertzian contact boundary conditions. Journal of sound and Vibration, 275: 177-191CrossRefGoogle Scholar
  89. 89.
    Wolf K, and Gottlieb O (2002) Nonlinear dynamics of a noncontacting atomic force microscope cantilever actuated by a piezoelectric layer. Journal of Applied Physics, 91 (7) 4701-4709CrossRefGoogle Scholar
  90. 90.
    Zhang W, Meng G, Zhou J, and Chen J (2009) Nonlinear dynamics and chaos of microcantilever-based TM-AFMs with squeeze film damping effects. Sensors, 9: 3854-3874CrossRefGoogle Scholar
  91. 91.
    Zhong Q, Innis D, Kjoller K, and Elings V B (1993) Fractured polymer silica fiber surface studied by tapping mode atomic-force microscopy,’’ Surface Science. 290: L688--L692CrossRefGoogle Scholar
  92. 92.
    Ouakad H and Younis M I (2009) Modeling and simulations of collapse instabilities of microbeams due to capillary forces. Mathematical Problems in Engineering, Article ID 871902, 16 pages, doi:10.1155/2009/871902Google Scholar
  93. 93.
    de Boer M P, Clews P J, Smith B K, and Michalske T A (1997) Adhesion of polysilicon microbeams in controlled humidity ambient. Materials Research Society, 518:131-136Google Scholar
  94. 94.
    de Boer M P, and Michalske T A (1999) Accurate method for determining adhesion of cantilever beams. Journal of applied physics, 86(2): 817-827CrossRefGoogle Scholar
  95. 95.
    Mastrangelo C H and Hsu C H (1993) Mechanical stability and adhesion of microstructures under capillary forces. I. Basic theory. Journal of Microelectromechanical Systems, 2: 33-43CrossRefGoogle Scholar
  96. 96.
    Mastrangelo C H and Hsu C H (1993) Mechanical stability and adhesion of microstructures under capillary forces. II. Experiments. Journal of Microelectromechanical Systems, 2: 44-55CrossRefGoogle Scholar
  97. 97.
    Legtenberg R, Tilmans H A C, Elders J, and Elwenspoek M (1994) Stiction of surface micromachined structures after rinsing and drying: model and investigation of adhesion mechanisms. Sensors and Actuators, 43: 230-238CrossRefGoogle Scholar
  98. 98.
    Tas N, Sonnenberg T, Jansen H, Legtenberg R, and Elwenspoek M (1996) Stiction in surface micromachining. Journal of Micromechanics and Microengineering, 6: 385–397CrossRefGoogle Scholar
  99. 99.
    Lambert P (2007) Capillary Forces in Microassembly: Modeling, Simulation, Experiments, and Case Study”, Springer, New YorkCrossRefGoogle Scholar
  100. 100.
    Hung E S and Senturia S D (1991) Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulations runs. Journal of Microelectromechanical Systems, 8: 280–289CrossRefGoogle Scholar
  101. 101.
    Nayfeh A H and Younis M I (2004) A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping. Journal of Micromechanics and Microengineering, 14: 170-181CrossRefGoogle Scholar
  102. 102.
    Hosaka H, Itao K, and Kuroda S (1995) Damping characteristics of beam-shaped micro-oscillators. Sensors and Actuators A, 49: 87-95CrossRefGoogle Scholar
  103. 103.
    Lifshitz R and Roukes M L (2000) Thermoelastic damping in micro-and nanomechanical systems. Physical Review B, 61: 5600–5609CrossRefGoogle Scholar
  104. 104.
    Nayfeh A H and Younis M I (2004) Modeling and simulations of thermoelastic damping in microplates. Journal of Micromechanics and Microengineering, 14: 1711-1717CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringState University of New YorkBinghamtonUSA

Personalised recommendations