Skip to main content

Elements of Lumped-Parameter Modeling in MEMS

  • Chapter
  • First Online:
Book cover MEMS Linear and Nonlinear Statics and Dynamics

Part of the book series: Microsystems ((MICT,volume 20))

  • 4057 Accesses

Abstract

In this chapter, we discuss the various elements of lumped-parameter modeling in MEMS devices. These include the stiffness of microstructures, the inertia elements, and the damping mechanisms of energy dissipation in microstructures. The forces affecting microstructures due to actuation and detection are another element, which is the subject of Chap. 3. The discussion here is focused mainly on linear modeling; nonlinear modeling is introduced in the following chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malatkar P and Nayfeh A H (2003) A parametric identification technique for single-degree-of-freedom weakly nonlinear systems with cubic nonlinearities. Journal of Vibration and Control. 9: 317–36

    Article  MATH  Google Scholar 

  2. Dick A J, Balachandran B, DeVoe D L, and Mote C D Jr (2006) Parametric identification of piezoelectric microscale resonators. Journal of Micromechanics and Microengineering. 16:1593–1601

    Article  Google Scholar 

  3. Osterberg P M and Senturia S D (1997) M-Test: A test chip for MEMS material property measurement using electrostatically actuated structures. Journal of Microelectromechanical Systems. 6:107–118

    Article  Google Scholar 

  4. Wang X D, Li N, Wang T, Liu M W, and Wang L D (2007) Dynamic characteristic testing for MEMS micro-devices with base excitation. Measurement Science and Technology. 18: 1740–1747

    Article  Google Scholar 

  5. Lai W P and Fang W (2002) Novel bulk acoustic wave hammer to determinate the dynamic response of microstructures using pulsed broad bandwidth ultrasonic transducers. Sensors and Actuators A. 96: 43–52

    Article  Google Scholar 

  6. Legtenberg R, Groeneveld A W, and Elwenspoek M (1996) Comb-drive actuators for large displacements. Journal of Micromechanics and Microengineering. 6: 320–329

    Article  Google Scholar 

  7. Gupta R K and Senturia S D (1997) Pull-in time dynamics as a measure of absolute pressure. Proceedings of the IEEE Micro Electro Mechanical Systems, MEMS ’97: pp. 290–294.

    Google Scholar 

  8. Ijntema D J and Tilmans H A (1992) Static and dynamic aspects of an air-gap capacitor. Sensors and Actuators A. 35:121–128

    Article  Google Scholar 

  9. Lobontiu N and Garcia E (2004) Mechanics of Microelectromechanical Systems. Springer, New York

    Google Scholar 

  10. Mische C R and Budynas R G (2008) Shigley’s Mechanical Engineering Design, 8th edition. McGraw-Hill, New York

    Google Scholar 

  11. Timoshenko S P and Goodier J N (1970) Theory of Elasticity. McGraw-Hill, New York

    MATH  Google Scholar 

  12. Pamidighantam S, Puers R, Baert K, and Tilmans H (2002) Pull-in  voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions. Journal of Micromechanics and Microengineering. 12: 458–464

    Article  Google Scholar 

  13. Balachandran B and Magrab E (2009) Vibrations, 2nd edition. Cengage Learning, Toronto

    Google Scholar 

  14. Osterberg P, Yie H, Cai X, White J, and Senturia, S (1994) Self-consistent simulation and modeling of electrostatically deformed diaphragms. Proceedings of the IEEE Workshop on Micro Electro Mechanical Systems MEMS 94, Oiso, Japan, 28 -- 32.

    Google Scholar 

  15. Young W and Budynas R (2002) Roark’s Formulas for Stress and Strain, 7th edition. McGraw Hill, New York

    Google Scholar 

  16. Xiao Z, Sun Y, Li B, Lee S, Sidhu K S, Chin K K, and Farmer K R (2004) Natural Frequency Shift of Rectangular Torsion Actuators due to Electrostatic Force. Proceeding of NSTI-Nanotech. 1:0–9728422-7–6

    Google Scholar 

  17. Nayfeh A H, Younis M I, and Abdel-Rahman E M (2005) Reduced-order models for MEMS applications. Nonlinear Dynamics. 41:211–236

    Article  MathSciNet  MATH  Google Scholar 

  18. Meirovitch L (2001) Fundamentals of Vibrations. McGraw Hill, New York

    Google Scholar 

  19. Alsaleem F, Younis M I, Ouakad H (2009) On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. Journal of Micromechanics and Microengineering, 19:045013(1–14)

    Article  Google Scholar 

  20. Thomoson W T and Dahleh M D (1998) Theory of Vibration with Applications, 5th edition. Prentice Hall, New Jersey

    Google Scholar 

  21. Palm W (2007) Mechanical Vibration. Wiley, New York

    Google Scholar 

  22. Lobontiu N (2007) Dynamics of Microelectromechanical Systems. Springer, New York

    Book  Google Scholar 

  23. Tang W C, Nguyen T C and Howe R T (1989) Laterally driven polysilicon resonant microstructures. Sensors Actuators A. 20:25–32

    Article  Google Scholar 

  24. Tang W C, Nguyen T C, Judy, M W, and Howe R T (1994) Electrostatic-comb drive of lateral polysilicon resonators. Sensors Actuators A. 21–23: 328–331

    Google Scholar 

  25. Lin L, Nguyen C, Howe R T, and Pisano A P (1992) Micro Electromechanical Filers for Signal Processing. Proceeding IEEE Micro-Electro-Mechanical Systems, Travemunde, Germany, pp: 226–231

    Google Scholar 

  26. Hirano T, Furuhata T, Gabriel K J, and Fujita H (1992) Design, fabrication, and operation of submicron gap comb-drive microactuators. Journal of Micromechanical systems. 1–1: 52–59

    Article  Google Scholar 

  27. Tilmans H A, Elwespoek M, and Fluitman J H (1992) Micro resonant force gauges. Sensors and Actuators A. 30: 35–53

    Article  Google Scholar 

  28. Hao Z, Erbil A, and Ayazi F (2003) An analytical model for support loss in micromachined beam resonators with in-plane flexture vibrations. Sensors and Actuators A. 109: 156–164.

    Article  Google Scholar 

  29. Hosaka H, Itao K, and Kuroda S (1995) Damping characteristics of beam-shaped micro-oscillators. Sensors and Actuators A. 49:87–95

    Article  Google Scholar 

  30. Corman T, Enoksson P, and Stemme G (1997) Gas damping of electrostatically excited resonators. Sensors and Actuators A. 61: 249–255

    Article  Google Scholar 

  31. Zook J D, Burns D W, Guckel H, Sniegowski J J, Engelstad R L, and Feng Z (1992) Characteristics of polysilicon resonant microbeams. Sensors and Actuators A. 35: 290–294

    Article  Google Scholar 

  32. Khonsari M M and Booser E R (2001) Applied Tribology. Wiley, New York

    Google Scholar 

  33. Li G and Hughes H (2000) Review of viscous damping in micro-machined structures. Proceedings of SPIE in micromachined devices and components VI, Bellingham, Washington, 4176: 30–46

    Google Scholar 

  34. Burgdorfer A (1959) The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearing. Journal of Basic Engineering. 81: 94–99

    Google Scholar 

  35. Beskok A and Karniadakis G E (1996) A model for rarefied internal gas flows. Journal of Fluid Mechanics. 10: 1–37

    Google Scholar 

  36. Newell W E (1968) Miniaturization of tuning forks. Science. 161: 1320–1326

    Article  Google Scholar 

  37. Blom F R, Bouwstra S, Elwenspoek M, Fluitman J H J (1992) Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry. Journal of Vacuum and Science Technology B. 10: 19–26

    Article  Google Scholar 

  38. Christian R G (1966) The theory of oscillating-vane vacuum gauges. Vacuum. 16: 175–178

    Article  Google Scholar 

  39. Kàdàr Z, Kindt W, Bossche A, and Mollinger J (1996) Quality factor of torsional resonators in the low-pressure region. Sensors and Actuators A. 53: 299–303

    Article  Google Scholar 

  40. Li B, Wu H, Zhu C, and Liu J (1999) The theoretical analysis on damping characteristics of resonant microbeam in vacuum. Sensors and Actuators A. 77: 191–194

    Article  Google Scholar 

  41. Bao M, Yang H, Yin H, and Sun Y (2002) Energy transfer model for squeeze-film air damping in low vacuum. Journal of Micromechanics and Microengineering. 12: 341–346

    Article  Google Scholar 

  42. Bao M (2005) Analysis and Design Principles of MEMS Devices. Elsevier, Amsterdam

    Google Scholar 

  43. Nayfeh A H and Younis M I (2004) A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping. Journal of Micromechanics and Microengineering. 14: 170–181

    Article  Google Scholar 

  44. Starr J B (1990) Squeeze-film damping in solid-state accelerometers. Proceeding of the IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, South Carolina, 44–47

    Google Scholar 

  45. Chu P B, Nelson P R, Tachiki M L, and Pister K S (1996) Dynamics of polysilicon parallel-plate electrostatic actuators. Sensors and Actuators A. 52: 216–220

    Article  Google Scholar 

  46. Blech J J (1983) On isothermal squeeze films. Journal of Lubrication Technology A. 105: 615–620

    Article  Google Scholar 

  47. Griffin W S, Richardson H H, and Yamanami S (1966) A study of fluid squeeze-film damping. Journal of Basic Engineering. 88: 451–456.

    Article  Google Scholar 

  48. Andrews M, Harris I, and Turner G (1993) A comparison of squeeze-film theory with measurements on a microstructure. Sensors and Actuators A. 36: 79–87

    Article  Google Scholar 

  49. Veijola T, Kuisma H, Lahdenpera J, and Ryhanen T (1995) Equivalent-circuit model of the squeezed gas film in a silicon accelerometer. Sensors and Actuators A. 48: 239–248

    Article  Google Scholar 

  50. Darling R B, Hivick C and, Xu J (1998) Compact analytical modeling of squeeze film damping with arbitrary venting conditions using a Green’s function approach. Sensors and Actuators A. 70: 32–41

    Article  Google Scholar 

  51. Yang Y J, Gretillat M A, and Senturia S D (1997) Effect of air damping on the dynamics of nonuniform deformations of microstructures. International Conference on Solid State Sensors and Actuators, TRANSDUCERS ’97, Chicago, Illinois, 2: 1093–1096

    Google Scholar 

  52. Hung E S and Senturia S D (1999) Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulations runs. Journal of Microelectromechanical Systems. 8: 280–289

    Article  Google Scholar 

  53. Mccarthy B, Adams G, McGruer N, and Potter D (2002) A dynamic model, including contact bounce of an electrostatically actuated microswitch. Journal of Microelectromechanical Systems. 11: 276–283

    Article  Google Scholar 

  54. Younis M I and Nayfeh A H (2007) Simulation of squeeze-film damping of microplates actuated by large electrostatic load. ASME Journal of Computational and Nonlinear Dynamics. 2: 232–241

    Article  Google Scholar 

  55. Legtenberg R and Tilmans H A (1994) Electrostatically driven vacuum-encapsulated polysilicon resonators. Part I. Design and fabrication. Sensors and Actuators A. 45: 57–66

    Article  Google Scholar 

  56. Harmrock B J (1994) Fundamentals of Fluid Film Lubrication. McGraw-Hill, New York

    Google Scholar 

  57. Schrag G and Wachutka G (2002) Physically based modeling of squeeze film damping by mixed-level system simulation. Sensors and Actuators A. 97: 193–200

    Article  Google Scholar 

  58. Veijola T, Ruokonen K, and Tittonen I (2001) Compact model for the squeezed-film damping including the open border effects. Proceeding of the Forth Conference on Modeling and Simulation of Microsystems, MSM’01, Hilton Head Island, South Carolina, pp. 76–79

    Google Scholar 

  59. Vemuri S, Fedder G K, and Mukherjee T (2000) Low-order squeeze film model for simulation of MEMS devices. Proceeding of the Third Conference on Modeling and Simulation of Microsystems, MSM’00, San Diego, pp. 205–208

    Google Scholar 

  60. Fukui S and Kaneko R (1988) Analysis of ultra-thin gas film lubrication based on linearized Boltzman equation: first report-derivation of a generalized lubrication equation including thermal creep flow. Journal of Tribology. 253–262:299–303

    Google Scholar 

  61. Hsia Y T and Domoto G A (1983) An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearance. Journal of Lubrication Technology: Transaction of the ASME. 105: 120–130

    Article  Google Scholar 

  62. Seidel H, Riedel H, Kolbeck R, M¨uck G, Kupke W, and Kupke W (1990) Capacitive silicon accelerometer with highly symmetric design. Sensors and Actuators A. 23: 312–315

    Article  Google Scholar 

  63. Mitsuya Y (1993) Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coefficient. Journal of Lubrication Technology: Transaction of the ASME. 115: 289–294

    Google Scholar 

  64. Pan F, Kubby J, Peeters E, Tran A T, and Mukherjee S (1998) Squeeze film damping effect on the dynamic response of a MEMS torsion mirror. Journal of Microelectromechanical Systems. 8: 200–208

    Google Scholar 

  65. Furlani E P (1999) Theory and simulation of viscous damped reflection phase gratings. Journal of Physics D: Applied Physics. 32: 412–416

    Article  Google Scholar 

  66. Gaberielson T (1993) Mechanical-thermal noise in micromachined acoustic and vibration sensors. IEEE Transaction on Electron Devices. 40: 903–909

    Article  Google Scholar 

  67. Bao M, Yang H, Sun Y, French P J (2003) Modified Reynold’s equation and analytical analysis of squeeze-film air damping of perforated structures. Journal of Micromechanics and Microengineering. 13: 795–800

    Article  Google Scholar 

  68. Homentcovschi D, Miles R N (2005) Viscous damping of perforated planar micromechanical structures. Sensors and Actuators A. 119: 544–552

    Article  Google Scholar 

  69. Tilmans H A and Legtenberg R (1994) Electrostatically driven vacuum-encapsulated polysilicon resonators. Part II. Theory and performance. Sensors and Actuators A. 45: 67–84

    Article  Google Scholar 

  70. Krylov S and Maimon R (2004) Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force. ASME Journal of Vibrations and Acoustics. 126–3: 332–342

    Article  Google Scholar 

  71. Younis M I, Alsaleem F M, Miles R, and Su Q (2007) Characterization for the performance of capacitive switches activated by mechanical shock. Journal of Micromechanics and Microengineering. 17: 1360–1370

    Article  Google Scholar 

  72. Sattler R, Plotz F, Fattinger G, Wachutka G (2002) Modeling of an electrostatic torsional actuator demonstrated with an RF MEMS switch. Sensors and Actuators A. 97–98: 337–346

    Article  Google Scholar 

  73. Tang W C, Nguyen T C, and Howe R T (1989) Laterally driven polysilicon resonant microstructures. Sensors Actuators A. 20, 25–32.

    Article  Google Scholar 

  74. Cho Y H, Pisano A, and Howe R T (1994) Viscous damping model for laterally oscillating microstructures. Journal of Microelectromechanical Systems. 3: 81–87

    Article  Google Scholar 

  75. Cleland A N (2003) Foundations of Nanomechanics. Springer, Berlin

    Google Scholar 

  76. Roszhart T V (1990) The effect of thermoelastic internal friction on the Q of micromachined silicon resonators. Proceedings of the IEEE technical Digest of Solid-State Sensors and Actuators Workshop, Hilton Head, South Carolina, pp. 13–16

    Google Scholar 

  77. Lifshitz R and Roukes M L (2000) Thermoelastic damping in micro- and nanomechanical systems. Physical Review B. 61: 5600–5609

    Article  Google Scholar 

  78. Zener C (1937) Internal friction in solids: I. Theory of internal friction in reeds. Physical Review. 52: 230–235

    Article  MATH  Google Scholar 

  79. Duwel A, Gorman J, Weinstein M, Borenstein J, and Ward P (2003) Experimental study of thermoelastic damping in MEMS gyros. Sensors and Actuators A. 103: 70–75

    Article  Google Scholar 

  80. Evoy S, Oikhovets A, Sekaric L, Parpia J M, Craighead H G, and Carr D W (2000) Temperature-dependent internal friction in silicon nanoelectromechanical systems. Applied Physics Letter. 77: 2397–2399

    Article  Google Scholar 

  81. Nayfeh A H and Younis M I (2004) Modeling and simulations of thermoelastic damping in microplates. Journal of Micromechanics and Microengineering. 14: 1711–1717

    Article  Google Scholar 

  82. Degani O, Socher E, Lipson A, Leitner T, Setter D J, Kaldor S, and Nemirovsky Y (1998) Pull-In Study of an Electrostatic Torsion Microactuator. Journal of Micromechanics and Microengineering. 7: 373–379

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad I. Younis Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Younis, M.I. (2011). Elements of Lumped-Parameter Modeling in MEMS. In: MEMS Linear and Nonlinear Statics and Dynamics. Microsystems, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6020-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6020-7_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6019-1

  • Online ISBN: 978-1-4419-6020-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics