Sensing and Actuation in MEMS

  • Mohammad I. Younis
Part of the Microsystems book series (MICT, volume 20)


There are number of common transduction methods in MEMS. Some transform a change of a physical quantity, such as pressure and temperature, into an electric signal that can be measured. These are called sensing or detection methods. They include piezoelectric, piezoresistive, and electrostatic methods. Also, comes under this category the so-called resonant sensors, which detect the change in the resonance frequencies of microstructures upon sensing. Other transduction methods convert an input energy into a motion of a microstructure. These are called actuation methods, which include electrothermal, electromagnetic, piezoelectric, and electrostatic. Among the transduction methods, electrostatic actuation and detection are considered the most common in MEMS. Hence, electrostatic transduction will be under extensive investigations in the upcoming chapters. Next, basic knowledge on the most common transduction methods in MEMS is introduced.


Piezoelectric Material Moveable Finger Piezoelectric Layer Proof Mass Electrostatic Actuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lange D, Brand O, Baltes H (2002) CMOS cantilever sensor systems: atomic-force microscopy and gas sensing applications, Springer, BerlinGoogle Scholar
  2. 2.
    Lerch P, Slimane C K, Romanowicz B, Renaud P (1996) Modelization and characterization of asymmetrical thermal micro-actuators. Journal of Micromechanics and Microengineering, 137:134-137CrossRefGoogle Scholar
  3. 3.
    Chi S P, Hsu W (1997) An electro-thermally and laterally driven polysilicon microactuator. Journal of Micromechanics and Microengineering, 7:7-13CrossRefGoogle Scholar
  4. 4.
    Corntois J H, Bright V M (1997) Applications for surface-micromachined polysilicon thermal actuators and arrays. Sensors and Actuators A, 58:9-25Google Scholar
  5. 5.
    Huang Q-A, Ka N, Lee S (1999) Analysis and design of polysilicon thermal flexure actuator. Journal of Micromechanics and Microengineering, 9:64-70CrossRefGoogle Scholar
  6. 6.
    Guckel H, Klein J, Christenson T, Skrobis K, Laudon M, Lovell E G (1992) Thermo-magnetic metal flexure actuators. In: Proceeding of Solid-State Sensor and Actuator Workshop, Hilton Head, pp. 73-75Google Scholar
  7. 7.
    Keller C G, Howe R T,(1995) Nickel-filled HEXSIL thermally actuated tweezers. In: Proceeding of the IEEE International Conference on Solid-State Sensors and Actuators (Transducers’ 95), Stockholm, Sweden, pp. 376-379Google Scholar
  8. 8.
    Noworolski J M, Klaassen E H, Logan J R, Peterson K E Maluf N I (1996) Process for in-plane and out-of-plane single-crystal-silicon thermal microactuators. Sensors and Actuators A, 55: 65-9CrossRefGoogle Scholar
  9. 9.
    Lott C D, McLain T W, Harb J N and Howell L L (2002) Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator. Sensors and Actuators A, 101:239-250CrossRefGoogle Scholar
  10. 10.
    Que L, Park J-S and Gianchandani Y B (2001) Bent-beam electrothermal actuators: I. Single beam and cascaded devices. Journal of Microelectromechanical Systems, 10:247-54CrossRefGoogle Scholar
  11. 11.
    Maloney J M, Schreiber D S, DeVoe D L (2004) Large-force electrothermal linear micromotors. Journal of Micromechanics and Microengineering, 14:226-234CrossRefGoogle Scholar
  12. 12.
    Cochran K R, Fan L, DeVoe D L (2005) High-power optical microswitch based on direct fiber actuation. Sensors and Actuators A: Physical, 119(2):512-519CrossRefGoogle Scholar
  13. 13.
    Sassen W P, Henneken V A, Tichem M, Sarro P M (2008) An improved in-plane thermal folded V-beam actuator for optical fiber Alignment. Journal of Micromechanics and Microengineering, 18:075033 (9pp)CrossRefGoogle Scholar
  14. 14.
    Chiao M, and Lin L (2000) Self-buckling of micromachined beams under resistive heating. Journal of Microelectromechanical Systems, 9(1):146-151CrossRefGoogle Scholar
  15. 15.
    Riethmuller W, Benecke W (1988) Thermally excited silicon microactuators. IEEE Transactions on Electron Devices, 35(6):758-763CrossRefGoogle Scholar
  16. 16.
    Chut W-H, Mehregany M, Mullen R L (1993) Analysis of tip deflection and force of a bimetallic cantilever microactuator. Journal of Micromechanics and Microengineering, 3:4-7CrossRefGoogle Scholar
  17. 17.
    Liu C (2006) Foundations of MEMS. Prentice Hall, New JerseyGoogle Scholar
  18. 18.
    Senturia S D (2001) Microsystem design. Springer, New YorkGoogle Scholar
  19. 19.
    Perumont A (2006) Mechatronics: dynamics of electromechanical and piezoelectric systems. Springer, NetherlandGoogle Scholar
  20. 20.
    Cheng H-M, Ewe1 M T S, Chiu G T-C, Bashir R (2001) Modeling and control of piezoelectric cantilever beam micro-mirror and micro-laser arrays to reduce image banding in electrophotographic processes. Journal of Micromechanics and Microengineering, 11:487-498Google Scholar
  21. 21.
    Gerlach T, Wurmus H (1995) Working principle and performance of the dynamics miropump. Sensor and Actuators A, 50:135-140.CrossRefGoogle Scholar
  22. 22.
    Olsson A, Stemme G, Stemme E (1995) A valve-less planar fluid pump with two pump chambers. Sensor and Actuators A, 46-47:549-556Google Scholar
  23. 23.
    Motamedi M E, Andrews A P, Brower E (1982) Accelerometer sensor using piezoelectric ZnO thin films. In Proceeding of the IEEE Ultrasononic Symposium, 1:303-307.Google Scholar
  24. 24.
    DeVoe D L, Pisano A P, Surface micromachined piezoelectric accelerometers (PiXLs). Journal of Microelectromechanical Systems, 10(2):180-186Google Scholar
  25. 25.
    Roundy S, Wright P K (2004) A piezoelectric vibration based generator for wireless electronics. Smart Material and Structures, 13:1131-1142CrossRefGoogle Scholar
  26. 26.
    Erturk A, Inman D J (2008) Issues in mathematical modeling of piezoelectric energy harvesters. Smart Materials and Structures, 17:065016(14pp).CrossRefGoogle Scholar
  27. 27.
    duToit N E, Wardle B L, Kim S-G (2005) Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integrated Ferroelectrics, 71:121-160CrossRefGoogle Scholar
  28. 28.
    Guyomar D, Aurelle N, Eyraud L (1997) Piezoelectric ceramics nonlinear behavior. Application to Langevin Transducer. Jounral of Physics III France, 7:1197-1208CrossRefGoogle Scholar
  29. 29.
    Wing Q-M, Zhang Q, Xu B, Liu R, Cross E (1999) Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields. 86:3352-3360Google Scholar
  30. 30.
    Mahmoodi S N, Jalili N, Daqaq M F (2008) Modeling, nonlinear dynamics, and identification of a piezoelectrically actuated microcantilever sensor. IEEE/ASME Transactions on Mechatronics, 13(1):58-65CrossRefGoogle Scholar
  31. 31.
    Dick A J, Balachandran B, DeVoe D L, Mote C D Jr (2006) Parametric identification of piezoelectric microscale resonators. Journal of Micromechanics and Microengineering, 16:1593-1601CrossRefGoogle Scholar
  32. 32.
    Li H, Preidikman S, Balachandran B, Mote C D Jr (2006) Nonlinear free and forced oscillations of piezoelectric microresonators. Journal of Micromechanics and Microengineering, 16:356-367CrossRefGoogle Scholar
  33. 33.
    Cho I-J, Song T, Baek S-H, Yoon E (2005) A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces. IEEE Transactions on Microwave Theory and Techniques, 53(7):2450-2457CrossRefGoogle Scholar
  34. 34.
    Cao A, Kim J, Lin L (2007) Bi-directional electrothermal electromagnetic actuators. Journal of Micromechanics and Microengineering, 17:975-982CrossRefGoogle Scholar
  35. 35.
    Han J S, Ko J S, Kim Y T, Kwak B M (2002) Parametric study and optimization of a micro-optical switch with a laterally driven electromagnetic microactuator. Journal of Micromechanics and Microengineering, 12:939-947CrossRefGoogle Scholar
  36. 36.
    Park S, Hah D (2008) Pre-shaped buckled-beam actuators: theory and experiment. Sensors and Actuators A, 148:186-192CrossRefGoogle Scholar
  37. 37.
    Greywall D (1999) Micromechanical RF filters excited by the Lorentz force. Journal of Micromechanics and Microengineering, 9:78-84.CrossRefGoogle Scholar
  38. 38.
    Lobontiu N, Garcia E (2004) Mechanics of Microelectromechanical Systems. Springer, New YorkGoogle Scholar
  39. 39.
    Yufeng S, Wenyuan C, Feng C, Weiping Z (2006) Electro-magnetically actuated valveless micropump with two flexible diaphragms. International Journal of Advanced Manufacturing Technology, 30:215-220CrossRefGoogle Scholar
  40. 40.
    Chang H-T, Lee C-Y, Wen C-Y, Hong B-S (2007) Theoretical analysis and optimization of electromagnetic actuation in a valveless microimpedance pump. Microelectronics Journal, 38:791-799CrossRefGoogle Scholar
  41. 41.
    Lagorce L K, Brand O, Allen M G (2002) Magnetic microactuator based on polymer magnets. Journal of Microelectromechanical Systems, 8(1):2-9CrossRefGoogle Scholar
  42. 42.
    Cho H J, Ahn C H (2002) A bidirectional magnetic microactuator using electroplated permanent magnet arrays. Journal of Microelectromechanical Systems, 11(1):78-84CrossRefGoogle Scholar
  43. 43.
    De S K, Aluru N R (2006) A hybrid full-Lagrangian technique for the static and dynamic analysis of magnetostatic MEMS. Journal of Micromechanics and Microengineering, 16:2646-2658CrossRefGoogle Scholar
  44. 44.
    Mizuno M, Chetwynd D G (2003) Investigation of a resonance microgenerator. Journal of Micromechanics and Microengineering, 13:209-216CrossRefGoogle Scholar
  45. 45.
    Külah H, Najafi K (2008) Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sensors Journal, 8(3):261-268CrossRefGoogle Scholar
  46. 46.
    Pei-Hong Wanga, Xu-Han Dai, Dong-Ming Fang, Xiao-Lin Zha (2007) Design, fabrication and performance of a new vibration-based electromagnetic micro power generator. Microelectronics Journal 38:1175-1180CrossRefGoogle Scholar
  47. 47.
    Judy J, Muller R (1996) Magnetic microactuation of torsional polysilicon structures. Sensors and Actuators A, 53:392-397CrossRefGoogle Scholar
  48. 48.
    Niarchos D (2003) Magnetic MEMS: key issues and some applications. Sensors and Actuators A, 109:166-173CrossRefGoogle Scholar
  49. 49.
    Bao M (2005) Analysis and design principles of mems devices. Elsevier, AmsterdamGoogle Scholar
  50. 50. (Sensata Technologies; Attleboro, MA)Google Scholar
  51. 51.
    Seeger J I, Boser B E (2003) Charge control of parallel-plate, electrostatic actuators and the tip-in instability. Journal of Microelectromechanical Systems, 12(5):656-671CrossRefGoogle Scholar
  52. 52.
    Pelesko J A, Bernstein D H (2002) Modeling MEMS and NEMS. CRC, Boca RatonCrossRefGoogle Scholar
  53. 53.
    Nathanson H C, Wickstrom R A (1965) A resonant-gate silicon surface transistor with high-Q band-pass properties. Applied Physics Letters, 7(4):84-86CrossRefGoogle Scholar
  54. 54.
    Nathanson H C, Newell W E, Wickstrom R A, Davis J R (1967) The resonant gate transistor. IEEE Transaction on Electron Devices, ED-14(3)Google Scholar
  55. 55.
    Ananthasuresh G K, Gupta R K, Senturia S D (1996) An approach to macromodeling of MEMS for nonlinear dynamic simulation. In Proceeding ASME International Conference of Mechanical Engineering Congress and Exposition (MEMS), Atlanta, GA, 401-407Google Scholar
  56. 56.
    Krylov S, Maimon R (2004) Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force. ASME Journal of Vibrations and Acoustics, 126(3):332-342CrossRefGoogle Scholar
  57. 57.
    De S K, Aluru N R (2006) Complex Nonlinear oscillations in electrostatically actuated microstructures. Journal of Microelectromechanical Systems, 15:355-369CrossRefGoogle Scholar
  58. 58.
    Lenci S, Rega G (2006) Control of pull-in dynamics in a nonlinear thermoelasticelectrically actuated microbeam. Journal of Micromechanics and Microengineering, 16:390-401CrossRefGoogle Scholar
  59. 59.
    Luo A C, Wang F Y (2004) Nonlinear dynamics of a Micro-electro-mechanical system with time-varying capacitors. Journal of Vibration and Acoustics, 126:77-83CrossRefGoogle Scholar
  60. 60.
    Elata D, Bamberger H (2006) On the dynamic pull-in of electrostatic actuators with multiple degrees of freedom and multiple voltage sources. Journal of Microelectromechanical Systems, 15:131-140CrossRefGoogle Scholar
  61. 61.
    Fargas-Marques A, Casals-Terre J, Shkel A M (2007) Resonant pull-in condition in parallel-plate electrostatic actuators. Journal of Microelectromechanical Systems, 16(5):1044-1053CrossRefGoogle Scholar
  62. 62.
    Seeger J I, Boser B E (2002) Parallel-plate driven oscillations and resonant pull-in. In: Proceeding of the Solid-State Sensor, Actuator and Microsystems Workshop, pp. 313-316Google Scholar
  63. 63.
    Nayfeh A H, Younis M I, Abdel-Rahman E M (2007) Dynamic pull-in phenomenon in MEMS resonators. Journal of Nonlinear Dynamics, 48:153-163MATHCrossRefGoogle Scholar
  64. 64.
    Alsaleem F, Younis M I, Ouakad H (2009) On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. Journal of Micromechanics and Microengineering, 19:045013(1-14)CrossRefGoogle Scholar
  65. 65.
    Tilmans H A, Raedt W D, Beyne E (2003) MEMS for wireless communications: from RF-MEMS components to RF-MEMS-SIP. Journal of Micromechanics and Microengineering, 13:139-163CrossRefGoogle Scholar
  66. 66.
    Rebeiz G M (2003) RF MEMS: Theory, design, and technology. Wiley, New YorkCrossRefGoogle Scholar
  67. 67.
    Varadan V M, Vinoy K J, Jose K A (2003) RF MEMS and their applications, Wiley, New YorkGoogle Scholar
  68. 68. (Texas Instruments; Dallas, Texas)Google Scholar
  69. 69.
    Jaecklin V P, Linder C, de Rooij N F (1994) Line-addressable tensional micromirrors for light modulator arrays. Sensors and Actuators A, 41-42:324-329Google Scholar
  70. 70.
    Zhang X M, Chau F S, Quan C, Lam Y L, Liu A Q (2001) A study of the static characteristics of a torsional micromirror. Sensors and Actuators A, 90:73-81CrossRefGoogle Scholar
  71. 71.
    Degani O, Socher E, Lipson A, Leitner T, Setter D J, Kaldor S, Nemirovsky Y (1998) Pull-in study of an electrostatic torsion microactuator, Journal of Microelectromechanical Systems, 7(4): 373-379CrossRefGoogle Scholar
  72. 72.
    O. Degani, Y. Nemirovsky, “Design Considerations of Rectangular Electrostatic Torsion Actuators Based on New Analytical Pull-in Expressions,” Journal of Microelectromechanical Systems, 11(1):20-26Google Scholar
  73. 73.
    Goodenough F (1991) Airbags boom when IC accelerometers sees 50 G. Electronic Design, 39:45-56Google Scholar
  74. 74.
    Kim C J, Pisano A P, Muller R S, Lim M G (1990) Polysilicon microgripper. In proceeding of the IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, Island, SC, pp 48-51Google Scholar
  75. 75.
    Tang W C, Nguyen T C, Howe R T (1989) Laterally driven polysilicon resonant microstructures. Sensors Actuators A, 20:25-32CrossRefGoogle Scholar
  76. 76.
    Tang W C, Nguyen T C, Judy M W, Howe R T (1990) Electrostatic-comb drive of lateral polysilicon resonators. Sensors Actuators A, 21-23:328-331Google Scholar
  77. 77.
    Lin L, Nguyen C T-C, Howe R T, Pisano A P (1992) Microelectromechanical filers for signal processing. In Proceeding of the IEEE Micro-Electro-Mechanical Systems, Travemunde, Germany, 226-231Google Scholar
  78. 78.
    Hirano T, Furuhata T, Gabriel K J, Fujita H (1992) Design, fabrication, and operation of submicron gap comb-drive microactuators. Journal of Microelectromechanical Systems, 1(1):52-59CrossRefGoogle Scholar
  79. 79.
    Legtenberg R, Groeneveld A W, Elwenspoek M (1996) Comb-drive actuators for large displacements. Journal of Micromechanics and Microengineering, 6:320-329CrossRefGoogle Scholar
  80. 80.
    Jaecklint V P, Lindert C, de Rooij N F, Moret J M (1992) Micromechanical comb actuators with low driving voltage. Journal of Micromechanics and Microengineering, 2:250-255CrossRefGoogle Scholar
  81. 81.
    Kim J, Christensen D, Lin L (2005) Monolithic 2-D Scanning Mirror Using Self-Aligned Angular Vertical Comb Drives. IEEE Photonics Technology Letters, 17(11):2307-2309CrossRefGoogle Scholar
  82. 82.
    Xie H, Pan Y, Fedder G K (2003) A CMOS-MEMS mirror with curled hinge comb drives. Journal of Microelectromechanical Systems, 12(4):450-457CrossRefGoogle Scholar
  83. 83.
    Zhang W, Turner K L (2005) Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sensors and Actuators A, 122:23-30CrossRefGoogle Scholar
  84. 84.
    Kovacs G T (1998) Micromachined transcucers sourcebook. McGraw-Hill, New YorkGoogle Scholar
  85. 85.
    Younis M I, Miles R, Jordy D (2006) Investigation of the response of microstructures under the combined effect of mechanical shock and electrostatic forces. Journal of Micromechanics and Microengineering, 16:2463-2474CrossRefGoogle Scholar
  86. 86.
    Langdon R M (1985) Resonator sensors-a review. Journal of Physics E: Scientific Instruments, 18:103-115CrossRefGoogle Scholar
  87. 87.
    Elwenspoek M, Wiegerink R (2001) Mechanical microsensors. Springer, Verlag.Google Scholar
  88. 88.
    Stemme G (1991) Resonant silicon sensors. Journal of Micromechanics and Microengineering, 1:113-125CrossRefGoogle Scholar
  89. 89.
    Tilmans H A, Elwespoek M, Fluitman J H (1992) Micro resonant force gauges. Sensors and Actuators A, 30:35-53CrossRefGoogle Scholar
  90. 90.
    Tilmans H A, Legtenberg R (1994) Electrostatically driven vacuum-encapsulated polysilicon resonators. Part II. Theory and performance. Sensors and Actuators A, 45:67-84CrossRefGoogle Scholar
  91. 91.
    Zook J D, Burns D W, Guckel H, Sniegowski R L, Engelstad R L, Feng Z (1992) Characteristics of polysilicon resonant microbeams. Sensors and Actuators A, 35:290-294CrossRefGoogle Scholar
  92. 92.
    Howe R T, Muller U S (1986) Resonant microbridge vapor sensor. IEEE Trans. Electron Devices, ED-33:499-506CrossRefGoogle Scholar
  93. 93.
    Thundat T, Wachter E A, Sharp S L, Warmack R J (1995) Detection of mercury vapor using resonating micro-cantilevers. Applied Physical Letters, 66:1695-1697CrossRefGoogle Scholar
  94. 94.
    Ilic B, Czaplewski D, Zalalutdinov M, Craighead H G, Neuzil P, Campagnolo C, Batt C (2001) Single cell detection with micromechanical oscillators. Journal of Vacuum Science & Technology B (Microelectronics and Nanometer Structures), 19:2825-2828CrossRefGoogle Scholar
  95. 95.
    Waggoner P S, Craighead H G (2007) Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab on a Chip, 7:1238-1255, doi:10.1039/b707401hCrossRefGoogle Scholar
  96. 96.
    Chiu H-Y, Hung P, Postma H W, Bockrath M (2008) Atomic-scale mass sensing using carbon nanotube resonators. Nano Letters, 8(12):4342-4346CrossRefGoogle Scholar
  97. 97.
    Burnes D W, Zook J D, Horning R D, Herb W R, Guckel H (1995) Sealed-cavity resonant microbeam pressure sensor. Sensors and Actuators A, 48:179-186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringState University of New YorkBinghamtonUSA

Personalised recommendations