Advertisement

Testing and Standards for Qualification

  • Allyson L. Hartzell
  • Mark G. da Silva
  • Herbert R. Shea
Chapter
Part of the MEMS Reference Shelf book series (MEMSRS)

Abstract

It can be said that the semiconductor is based on three elements: the transistor, the capacitor and the wire. There is not a standard set of structures in the MEMS world; this is a very versatile field with little boundaries and new products developing daily (bioMEMS from polymers, inertial MEMS, powerMEMS, optical MEMS, RF MEMS, etc.). Thus, testing each MEMS product type and design can require unique instruments that are often custom designed. Development of the product itself and test platforms that quantify the test distribution of MEMS parts is critical to produce the product. If the part test distributions all fall within the production specification then 100% yield is achieved, the ultimate goal for any manufacturing line (Chapter 7).

Keywords

Test Platform Laser Doppler Vibrometer Mechanical Shock High Temperature Storage Deformable Mirror 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Douglass, M.R. (2008) MEMS Reliability, Coming of Age. Proc. of SPIE. 6884, 688402, (eds. Hartzell, A.L. Ramesham, R.).Google Scholar
  2. 2.
    Zunino, J. III, Skelton, D. (2006) Department of Defense Need for a Micro-electromechanical Systems (MEMS) Reliability Assessment Program. Proc. of SPIE. 5716, (eds. Tanner, D., Rajeshuni Ramesham R.).Google Scholar
  3. 3.
    Merlijn van Spengen, W. (2003) MEMS reliability from a failure mechanisms prospective. Microelectronics Reliability 43, 1049–1060.CrossRefGoogle Scholar
  4. 4.
    Tanner, D., et al. (2000) MEMS reliability in a vibration environment. IEEE IRPS, San Jose, CA, April 10–13, pp. 139–145.Google Scholar
  5. 5.
  6. 6.
    Dagel, D.J., et al. (2006) Large-stroke MEMS deformable mirrors for adaptive optics. J. Microelectromech. Syst. 15(3).Google Scholar
  7. 7.
    Andrews, J.R., et al. (2008) Performance of a MEMS Reflective Wavefront Sensor. Proc. of SPIE Vol. 6888, 68880C, MEMS Adaptive Optics II.Google Scholar
  8. 8.
    Zecchino, M., Novak E. (2003) MEMS in Motion, a New Method for Dynamic MEMS Metrology”, Veeco Instruments, AN514-1-0603.Google Scholar
  9. 9.
    Veeco Instruments, Wyko NT Series Optical Profilometers. B506, Rev A7, 2009.Google Scholar
  10. 10.
  11. 11.
    Cascade Microtech and Polytec PI. MEMS Optical Switch Production Test System. document number MEMSPB-0401.Google Scholar
  12. 12.
    Courtesy W. Noell at the EPFL and S. Weber at the University of Geneva.Google Scholar
  13. 13.
    Lawrence, E. Rembe, C. (2004) MEMS characterization using new hybrid laser doppler vibrometer/strobe video system. Proc. of SPIE. 5343, Reliability, Testing and Characterization of MEMS/MOEMS III.Google Scholar
  14. 14.
    Tanner, D. et al. (1997) First reliability test of a surface micromachined microengine using SHiMMer. SPIE, 3224.Google Scholar
  15. 15.
  16. 16.
  17. 17.
    JESD22-A104C; JEDEC Standard, Temperature Cycling, May 2005. JEDEC Solid State Technology Association.Google Scholar
  18. 18.
  19. 19.
  20. 20.
    O’Reilly, R. (2006) High G testing of MEMS devices. Proc. of the SPIE. 6111, Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS V”.Google Scholar
  21. 21.
    Seinfeld, J. (1986) Atmospheric chemistry and physics of air pollution, New York: John Wiley and Sons, p. 181.Google Scholar
  22. 22.
    Hartzell, A.L., et al. (2010) Reliability of MEMS deformable mirror technology used in adaptive optics imaging systems. Proc of SPIE. 7595, 75950B. MEMS Adaptive Optics IV. Google Scholar
  23. 23.
    Mil-Std-883H.Google Scholar
  24. 24.
    Mil-Std-810G.Google Scholar
  25. 25.
    Bhattacharya, S., Hartzell, A. (2007) J. Micro/Nanolith, MEMS MOEMS, Jul-Sep /Vol 6(3).Google Scholar
  26. 26.
    AEC-Q100G.Google Scholar
  27. 27.
    Delak, K., et al. (1999) Analysis of manufacturing scale MEMS reliability testing. SPIE Vol. 3880, Part of the SPIE Conference on MEMS Reliability for Critical and Space Applications, Santa Clara, CA.Google Scholar
  28. 28.
    Gogoi, B. (1999) et al. Integration Issues for Pressure Sensors. Proc. SPIE, 3874, 174.CrossRefGoogle Scholar
  29. 29.
    Bitko, G. et al. Analytical techniques for examining reliability and failure mechanisms of barrier coating encapsulated silicon pressure sensors exposed to harsh media. Proc. SPIE, Vol. 2882.Google Scholar
  30. 30.
    August, R., et al. (1999) Acceleration sensitivity of micromachined pressure sensors. SPIE Vol. 3876. Part of the SPIE Conference on Micromachined Devices and Components.Google Scholar
  31. 31.
    Stark, B. (ed) (1999) MEMS reliability assurance guidelines for space applications. JPL Publication 99-1, National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA. January.Google Scholar
  32. 32.
    Spiegl, C. (1997) Large-area display system using Digital Light Processing. 1997 SPIE International Symposium on Aerospace/Defense Sensing and Controls, Cockpit Displays IV, Orlando, FA.Google Scholar
  33. 33.
    Becker, B., Phillips, R. (1998) Highly accelerated life testing for the 1210 Digital Ruggedized Display. Proceedings of the SPIE Vol. 3363. Cockpit Displays V: Displays for Defense Applications, 1998.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Allyson L. Hartzell
    • 1
  • Mark G. da Silva
    • 2
  • Herbert R. Shea
    • 3
  1. 1.Lilliputian Systems, Inc.WilmingtonUSA
  2. 2.RSTC, MS-112Analog Devices Inc.WilmingtonUSA
  3. 3.Microsystems for Space Technologies LaboratoryEPFLNeuchatelSwitzerland

Personalised recommendations