Root Cause and Failure Analysis

  • Allyson L. Hartzell
  • Mark G. da Silva
  • Herbert R. Shea
Part of the MEMS Reference Shelf book series (MEMSRS)


This chapter will cover strategies for identifying root cause and corrective action of reliability field failures. The MEMS reliability program must include strategies for identifying potential failure modes, failure mechanisms, risk areas in design and process, and containment strategies. Containment of the failure is crucial to achieving a low field failure rate while the root cause is determined and the proper corrective action is developed, checked for effectiveness, and then finally implemented into production.


Galvanic Corrosion Risk Priority Number Mirror Curvature Potential Failure Mode Laser Doppler Vibrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Document SAE J 1739: Potential Failure Mode and Effects Analysis in Design (Design FMEA) and Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes (Process FMEA) Reference Manual, SAE, 400 Commonwealth Drive, Warrendale, PA 15096–0001.Google Scholar
  2. 2.
    Bhattacharya, S., Hartzell, A. (2007) J. Micro/Nanolith, MEMS MOEMS, Jul–Sep 6(3), 033010-1–033010-12.Google Scholar
  3. 3.
    Stoney, G.G. (1909) The tension of metallic films deposited by electrolysis. Proc. R. Soc. London, Ser. A. 82(553), 172–175.CrossRefGoogle Scholar
  4. 4.
    LaVern, A.S. (2002) PhD Thesis, Air Force Institute of Technology, April 2002 “Characterization of Residual Stress in Microelectromechanical Systems (MEMS) Devices using Raman Spectroscopy”.Google Scholar
  5. 5.
    Ken, G., et al. (2004) Creep of thin film Au on bimaterial Au/Si microcantilevers. Acta Materialia 52, 2133–2146.CrossRefGoogle Scholar
  6. 6.
    Arthur Lin, Y. (1999) Parametric Wafer Map Visualization. IEEE Comput. Graphics Appl. 19(4), 14–17, (Jul/Aug).CrossRefGoogle Scholar
  7. 7.
    Arman G., et al. (2000) Mechanical Reliability of Surface Micromachined Self-Assembling Two-Axis MEMS Tilting Mirrors. Prov. SPIE. 4180, MEMS Reliability for Critical Applications.Google Scholar
  8. 8.
    Wyko NT9100 Optical Profiling System, 2007 Veeco Instruments Inc. DS544, Rev A0.Google Scholar
  9. 9.
    Koev, S.T., Ghodssi, R. (2008) Advanced interferometric profile measurements through refractive media. Rev. Sci. Instrum. 79, 093702.CrossRefGoogle Scholar
  10. 10.
    Goldstein J, Newbury DE, Joy DC, Lyman CE (2003) Scanning Electron Microscopy and X-ray Microanalysis. New York: Springer.CrossRefGoogle Scholar
  11. 11.
    Kahn, H., Ballarini, R., Heuer, A.H. (2001) On the Fracture Toughness of Polysilicon MEMS Structures. Mat. Res. Soc. Symp. Proc. 657 (© 2001 Materials Research Society). 13–18.Google Scholar
  12. 12.
    Miller, D.C., et al. (2008) Connections between morphological and mechanical evolution during galvanic corrosion of micromachined polysilicon and monocyrstalline silicon. J. Appl. Phys. 103, 123518.CrossRefGoogle Scholar
  13. 13.
    Guy F. Dirras, George Coles, Anthony J Wagner, Stephen Carlo, Caroline Newman, Kevin J. Hemker, William N. Sharpe, “On the Role of the Underlying Microstructure on the Mechanical Properties of Microelectromechanical Systems (MEMS) Materials” Materials Science of Microelectromechanical Systems (MEMS) Devices III, MRS Proceedings Volume 657.Google Scholar
  14. 14.
    Nunan, K., Ready, G., Sledziewski, J. (2001) LPCVD and PECVD Operations Designed for iMEMS Sensor Devices. Vacuum Coating Technol. 2(1), 26–37.Google Scholar
  15. 15.
    Gnauck, P., Hoffrogge, P. (2003) A new SEM/FIB Crossbeam Inspection Tool for high Resolution Mateirals and Device Characterization. Proc of SPIE. 4980, Reliability, Testing, and Characterization of MEMS/MOEMS II.Google Scholar
  16. 16.
    Walraven, J., et al. (2000) Failure analysis of tungsten coated polysilicon micromachined mircroengines. Proc. of SPIE. 4180, MEMS Reliability for Critical Applications.Google Scholar
  17. 17.
    Bharat, B., Huiwen, L. (2004) Micro/nanoscale tribological and mechanical characterization for MEMS/NEMS. Proc. of SPIE. 5392, Testing, Reliability and Application of Micro- and Nano-Material Systems II.Google Scholar
  18. 18.
    Loretto, M.H. (1984) Electron Beam Analysis of Materials. New York: Springer Science and Business Media.CrossRefGoogle Scholar
  19. 19.
    Miller, D., et al. (2007) Thermo-mechanical evolution of multilayer thin films: Part II. Microstructure evolution in Au/Cr/Si microcantilevers. Thin Solid Films 515, 3224–3240.CrossRefGoogle Scholar
  20. 20.
    Thornell, G., et al. (1999) Residual stress in sputtered gold films on quartz measured by the cantilevel beam deflection technique. IEEE Trans Ultrasonics, Ferroelectrics, Frequency Control, 46(4), July.Google Scholar
  21. 21.
    Alie, S., Hartzell, A., Karpman, M., Martin, J.R., Nunan, K. (2003) Optical mirror coatings for high-temperature diffusion barriers and mirror shaping United States Patent 6508561, Analog Devices.Google Scholar
  22. 22.
    Knieling, T., Lang, W., Benecke, W. (2007) Gas phase hydrophobisation of MEMS silicon structures with self-assembling monolayers for avoiding in-use sticking. Sensors Actuators B 126, 13–17.CrossRefGoogle Scholar
  23. 23.
    Mowat, I., et al. (2007) Analytical methods for nanotechnology. NSTI Nanotech 2007 Proceedings, Santa Clara, May 20–24.Google Scholar
  24. 24.
    Tepolt, G.B. (2010) Hermetic vacuum sealing of MEMS devices containing organic components. SPIE 2010 Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS and Nanodevices IX, Conference 7592.Google Scholar
  25. 25.
    Mastrangelo, C.H. (1999) Supression of Stiction in MEMS. MRS.Google Scholar
  26. 26.
    Mastrangelo, C.H., Hsu, C.H. (1992) A simple experimental technique for the measurement of work of adhesion of microstructures. Solid-State Sensor and Actuator Workshop, 1992, 5th Technical Digest, IEEE; 22–25 June.Google Scholar
  27. 27.
    Maboudian, R., Carraro, C. (2004) Surface chemistry and tribology of MEMS. Ann. Rev. Phys. Chem. 55, 35–54.CrossRefGoogle Scholar
  28. 28.
    Wibbeler, J. et al. (1988) Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS). Sensor Actuators A 71, 74–80.CrossRefGoogle Scholar
  29. 29.
    Reiter, G. et al. (1999) Destabilizing effect of long-range forces in thin liquid films on wettable surfaces. Europhys. Lett. 46(4), 512–518.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Danilov, V. et al. (2009) Plasma treatment of polydimethylsiloxane thin films studied by infrared reflection absorption spectroscopy. 29th ICPIG, July 12–17, Cancun, Mexico.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Allyson L. Hartzell
    • 1
  • Mark G. da Silva
    • 2
  • Herbert R. Shea
    • 3
  1. 1.Lilliputian Systems, Inc.WilmingtonUSA
  2. 2.RSTC, MS-112Analog Devices Inc.WilmingtonUSA
  3. 3.Microsystems for Space Technologies LaboratoryEPFLNeuchatelSwitzerland

Personalised recommendations