In-Use Failures

  • Allyson L. Hartzell
  • Mark G. da Silva
  • Herbert R. Shea
Chapter
Part of the MEMS Reference Shelf book series (MEMSRS)

Abstract

This chapter addresses in-use failures of MEMS, with an emphasis on the physics of failure. Chapter 3 dealt with eliminating failures from a design and manufacturing perspective. In this chapter we focus on how a well-designed, fabricated and packaged device can fail in use. There is a tight link between the design, manufacturing and in-use failures. Understanding the physics of failure (e.g., creep, fatigue) and the properties of materials used and the link to the process flow (e.g., yield strength of poly-silicon following HF release) lead to improved design rules to ensure the device will operate reliably in the expected operating environment. A concurrent design of the package is often required, but is not addressed in this chapter.

Keywords

Surfactant SiO2 Welding Lithium Ozone 

References

  1. 1.
    Arney, S. (2001) Designing for MEMS reliability. MRS Bull 26(4), 296.MathSciNetCrossRefGoogle Scholar
  2. 2.
    D. M. Tanner et al. (2000) MEMS reliability: infrastructure, test structures, experiments, and failure modes. Sandia Report SAND2000-0091, http://mems.sandia.gov/tech-info/doc/000091o.pdf
  3. 3.
    Gad-el-Hak, M. (ed) (2002) The MEMS Handbook. Boca Raton, FL: CRC Press.MATHGoogle Scholar
  4. 4.
  5. 5.
    Boyce, B.L., Grazier, J.M., Buchheit, T.E., Shaw, M.J. (2007) Strength distributions in polycrystalline silicon MEMS. J. Microelectromech. Syst. 16(2), 179.CrossRefGoogle Scholar
  6. 6.
    Chen, K.-S., Ayon, A., Spearing, S.M. (2000) Controlling and testing the fracture strength of silicon on the mesoscale. J. Am. Ceramic Soc. 83(6), 1476–1484.CrossRefGoogle Scholar
  7. 7.
    Sharpe, W.N., Bagdahn, J., Jackson, K., Coles, G. (2003) Tensile testing of MEMS materials—recent progress. J. Mater. Sci. 38, 4075–4079.CrossRefGoogle Scholar
  8. 8.
    Bagdahn, J., Sharpe, W.N., Jadaan, O. (2003) Fracture strength of polysilicon at stress concentrations. J. Microelectromech. Syst. 12(3), 302–312.CrossRefGoogle Scholar
  9. 9.
    Tanner, D.M., Walraven, J.A., Helgesen, K., Irwin, L.W., Brown, F., Smith, N.F., Masters, N. (2000) MEMS reliability in shock environments. Proc. 38th IEEE Int. Reliability Phys. Symp.Google Scholar
  10. 10.
    Rasmussen, J., Bonivert, W., Krafcik, J. (2003) High aspect ratio metal MEMS (LIGA) technologies for rugged, low-cost firetrain and control components. NDIA 47th Annual Fuze Conference, April 10. Available at: http://www.dtic.mil/ndia/2003fuze/rasmussen.pdf
  11. 11.
    Srikar, V.T., Senturia, S.D. (2002) The reliability of microelectromechanical systems (MEMS) in shock environments. J. Microelectromech. Syst. 11(3), 206.CrossRefGoogle Scholar
  12. 12.
    Sundaram, S. private communication. subramanian.s88@gmail.comGoogle Scholar
  13. 13.
    Greek, S., Ericson, F., Johansson, S., Fürtsch, M., Rump, A. (1999) Mechanical characterization of thick polysilicon films: Young’s modulus and fracture strength evaluated with microstructures. J. Micromech. Microeng. 9, 245–251.CrossRefGoogle Scholar
  14. 14.
    Wagner, U., Muller-Fiedler, R., Bagdahn, J., Michel, B., Paul, O. (2003) Mechanical reliability of epipoly MEMS structures under shock load. TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, vol. 1.Google Scholar
  15. 15.
    Sang, W.Y., Yazdi, N., Perkins, N.C., Najafi, K. (2005) Novel integrated shock protection for MEMS. Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers. TRANSDUCERS ’05. The 13th International Conference on, vol.1.Google Scholar
  16. 16.
    Liu, H., Bhushan, B. (2004) Nanotribological characterization of digital micromirror devices using an atomic force microscope. Ultramicroscopy 100, 391–412.CrossRefGoogle Scholar
  17. 17.
    Hartzell, A., Woodilla, D. (1999) Reliability methodology for prediction of micromachined accelerometer stiction. 37th International Reliability Physics Symposium (IRPS), San Diego, California, 202Google Scholar
  18. 18.
    Swiler, T.P., Krishnamoorthy, U., Clews, P.J., Baker, M.S., Tanner, D.M. (2008) Challenges of designing and processing extreme low-G microelectromechanical system (MEMS) accelerometers, Proc. SPIE 6884, 68840O, DOI: 10.1117/12.77.Google Scholar
  19. 19.
  20. 20.
    Stauffer, J.-M., Dutoit, B., Arbab, B. (2006) Standard MEMS sensor technologies for harsh environment. IET Digest 2006, (11367), 91–96, DOI: 10.1049/ic:20060450.Google Scholar
  21. 21.
    Stauffer, J.-M. (2006) Standard MEMS capacitive accelerometers for harsh environment. Paper CANEUS2006-11070, Proceedings of CANEUS2006, August 27–September 1, Toulouse, FranceGoogle Scholar
  22. 22.
    Habibi, S., Cooper,S.J., Stauffer, J.-M., Dutoit, B. (2008) Gun hard inertial measurement unit based on MEMS capacitive accelerometer and rate sensor. IEEE/ION Position Location and Navigation System (PLANS) Conference.Google Scholar
  23. 23.
    Ghose, K., Shea, H.R. (2009) Fabrication and testing of a MEMS based Earth sensor. Transducers 2009, Denver, CO, USA, June 21–25, paper M3P.077.Google Scholar
  24. 24.
    Suhir, E. (1997) Is the maximum acceleration an adequate criterion of the dynamic strength of a structural element in an electronic product? IEEE Trans. Components Packaging Manuf. Technol.—Part A, 20(4), December 1997.Google Scholar
  25. 25.
    Harris C.M. (ed) (2002) Harris’ Shock and Vibration Handbook, 5th edn. New York: McGraw-Hill.Google Scholar
  26. 26.
    Young, W.C. Roark’s Formulas for Stress And Strain, 6th edn. New York: McGraw Hill.Google Scholar
  27. 27.
    Muhlstein, C. L., Brown, S. B., Ritchie, R. O. (2001) High-cycle fatigue of single-crystal silicon thin films. J. Microelectromech. Syst. 10, 593.CrossRefGoogle Scholar
  28. 28.
    Gasparyan, A., Shea, H., Arney, S., Aksyuk, V., Simon, M.E., Pardo, F., Chan, H.B., Kim, J., Gates, J., Kraus, J.S., Goyal, S., Carr, D., Kleiman, R. Drift-Free, 1000G Mechanical Shock Tolerant Single-Crystal Silicon Two-Axis MEMS Tilting Mirrors in a 1000×1000-Port Optical Crossconnect, Post deadline paper PD36-1, Optical Fiber Communication Conference and Exhibit 2003, OFC 2003, March 2003 Atlanta, GA. DOI: 10.1109/OFC.2003.1248617Google Scholar
  29. 29.
    Kahn, H., Deeb, C., Chasiotis, I., Heuer, A.H. (2005) Anodic oxidation during MEMS processing of silicon and polysilicon: native oxides can be thicker than you think. J. Microelectromech. Syst. 14, 914–923.CrossRefGoogle Scholar
  30. 30.
    Miller, D., Gall, K., Stoldt, C. (2005) Galvanic corrosion of miniaturized polysilicon structures: morphological, electrical, and mechanical effects. Electrochem. Solid-State Lett. 8, G223–G226.CrossRefGoogle Scholar
  31. 31.
    Modlinski, R., Ratchev, P., Witvrouw, A., Puers, R., DeWolf, I. (2005) Creep-resistant aluminum alloys for use in MEMS. J. Micromech. Microeng. 15, S165–S170, doi:10.1088/0960-1317/15/7/023CrossRefGoogle Scholar
  32. 32.
    Douglass, M.R. (1998) Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD). 36th Annual International Reliability Physics Symposium, Reno, Nevada.Google Scholar
  33. 33.
    Modlinski, R., Witvrouw, A., Ratchev, P., Puers, R., den Toonder, J.M.J., De Wolf, I. (2004) Creep characterization of Al alloy thin films for use in MEMS applications. Microelectron. Eng. 76, 272–278.CrossRefGoogle Scholar
  34. 34.
    Ritchie, R.O., Dauskardt, R.H. (1991) J. Ceram. Soc. Jpn. 99, 1047–1062.CrossRefGoogle Scholar
  35. 35.
    Ritchie, R.O. (1999) Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int. J. Fracture 100, 55–83.CrossRefGoogle Scholar
  36. 36.
    Van Arsdell, W.W., Brown, S.B. (1999) Subcritical crack growth in silicon MEMS. J. Microelectromech. Syst. 8, 319.CrossRefGoogle Scholar
  37. 37.
    Muhlstein, C.L., Stach, E.A., Ritchie, R.O. (2002) Mechanism of fatigue in micron-scale films of polycrystalline silicon for microelectromechanical systems. Appl. Phys. Lett. 80, 1532.CrossRefGoogle Scholar
  38. 38.
    Muhlstein, C.L., Stach, E.A., Ritchie, R.O. (2002) A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading. Acta Mater. 50, 3579.CrossRefGoogle Scholar
  39. 39.
    Kahn, H., Chen, L., Ballerini, R., Heuer, A.H. (2006) Acta Mater. 54, 667CrossRefGoogle Scholar
  40. 40.
    Kahn, H., Ballerini, R., Bellante, J.J., Heuer, A.H. (2002) Fatigue failure in polysilicon not due to simple stress corrosion cracking. Science 298, 1215.Google Scholar
  41. 41.
    Alsem, D.H. et al. (2007) Very high-cycle fatigue failure in micron-scale polycrystalline silicon films: effects of environment and surface oxide thickness. J. Appl. Phys. 101, 013515.CrossRefGoogle Scholar
  42. 42.
    Douglass, M.R. (2003) DMD reliability: a MEMS success story. In R. Ramesham, D. Tanner (eds) Proceedings of the Reliability, Testing, and Characterization of MEMS/ MOMES II, SPIE, Bellingham, WA, Vol. 4980, 1–11.CrossRefGoogle Scholar
  43. 43.
    Yang, Y., Allameh, S., Lou, J., Imasogie, B., Boyce, B.L., Soboyejo, W.O. (2007) Fatigue of LIGA Ni micro-electro-mechanical system thin films. Metallurgical Mater. Trans. A 38A, 2340.Google Scholar
  44. 44.
    Cho, H.S., Hemker, K.J., Lian, K., Goettert, J., Dirras, G. (2003) Sens. Actuat. A: Phys. 103(1–2), 59–63.CrossRefGoogle Scholar
  45. 45.
    Son, D. et al. (2005) Tensile properties and fatigue crack growth in LIGA nickel MEMS structures. Mater. Sci. Eng. A 406, 274–278.CrossRefGoogle Scholar
  46. 46.
    Allameh, M., Lou, J., Kavishe, F., Buchheit, T.E., Soboyejo, W.O. (2004) Mater. Sci. Eng. A 371, 256–66.CrossRefGoogle Scholar
  47. 47.
    Reid, J.R., Webster, R.T. (2002) Measurements of charging in capacitive microelectromechanical switches. Electron. Lett. 38(24), 1544–1545.CrossRefGoogle Scholar
  48. 48.
    De Groot, W.A., Webster, J.R., Felnhofer, D., Gusev, E.P. (2009) Review of device and reliability physics of dielectrics in electrostatically driven MEMS devices. IEEE Trans. Dev. Mater. Reliability 9(2), art. no. 4813209, 190–202.Google Scholar
  49. 49.
    Shea, H.R., Gasparyan, A., Chan, H.B., Arney, S., Frahm, R.E., López, D., Jin, S., McConnell, R.P. (2004) Effects of electrical leakage currents on MEMS reliability and performance. IEEE Trans Dev. Mater. Reliability 4(2), 198–207.Google Scholar
  50. 50.
    Crank, J. (1997) The mathematics of diffusion, 2nd edn. Oxford: Clarendon Press, 47–51.Google Scholar
  51. 51.
    Lewis, T.J. (1978) In D.T. Clark and W.J. Feast (eds) The Movement of Electrical Charge Along Polymer Surfaces in Polymer Surfaces. New York: John Wiley & Sons.Google Scholar
  52. 52.
    Ehmke, J., Goldsmith, C., Yao, Z., Eshelman, S. (2002) Method and apparatus for switching high frequency signals. Raytheon Co., United States patent 6,391,675; May 21.Google Scholar
  53. 53.
    Ohring, M. (1998) Reliability and Failure of Electronic Materials and Devices. New York: Academic Press, 310–325 and references therein.Google Scholar
  54. 54.
    Rebeiz, G.M., Muldavin, J.B. (2001) RF MEMS switches and switch circuits. in IEEE Microwave Magazine 2(4), 59–71.CrossRefGoogle Scholar
  55. 55.
    Rebeiz, G.M. (2003) RF MEMS: Theory, Design and Technology. New York: John Wiley and Sons.CrossRefGoogle Scholar
  56. 56.
    Goldsmith, C.L., Forehand, D., Scarbrough, D., Peng, Z., Palego, C., Hwang, J.C.M., Clevenger, J. (2008) Understanding and improving longevity in RF MEMS capacitive switches. Proc. Int. Soc. Opt. Eng. 6884(03), Feb 2008.Google Scholar
  57. 57.
    Peng, Z., Palego, C., Hwang, J.C.M., Moody, C., Malczewski, A., Pillans, B., Forehand, D., Goldsmith, C. (2009) Effect of packaging on dielectric charging in RF MEMS capacitive switches. IEEE Int. Microwave Symp. Dig. 1637–1640, June 2009.Google Scholar
  58. 58.
    Wibbeler, J., Pfeifer, G., Hietschold, M. (1998) Sens. Actuators A 71, 74–80.CrossRefGoogle Scholar
  59. 59.
    Van Spengen, W.M., Puers, R., Mertens, R., De Wolf, I. (2004) A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches. J. Micromechan. Microeng. 14(4), 514–521.CrossRefGoogle Scholar
  60. 60.
    Goldsmith, C.L., Ehmke, J., Malczewski, A., Pillans, B., Eshelman, S., Yao, Z., Brank. J., Eberly, M. (2001) Lifetime characterization of capacitive RF MEMS switches. IEEE MTT-S Int. Microwave Symp. Digest 3, 227–230.Google Scholar
  61. 61.
    Peng, Z., Palego, C., Hwang, J.C.M., Forehand, D., Goldsmith, C., Moody, C., Malczewski, A., Pillans, B., Daigler, R., Papapolymerou, J. (2009) Impact of humidity on dielectric charging in RF MEMS capacitive switches. IEEE Microwave Wireless Comp. Lett. vol. 1.Google Scholar
  62. 62.
    Schönhuber, M.J. (1969) Breakdown of gases below paschen minimum: basic design data of high-voltage equipment. IEEE Trans. Power Apparatus Syst. vol. PAS-88, 100, Feb 1969Google Scholar
  63. 63.
    Dhariwal, R.S., Torres, J.M., Desmulliez, M.P.Y. (2000) Electric field breakdown at micrometre separations in air and nitrogen at atmospheric pressure. IEE Proc. Sci. Meas. Technol. 147(5), 261–265.CrossRefGoogle Scholar
  64. 64.
    Torres, J.-M., Dhariwal, R.S. (1999) Electric field breakdown at micrometre separations. Nanotechnology 10, 102–107.CrossRefGoogle Scholar
  65. 65.
    Slade, P.G., Taylor, E.D. (2002) Electrical breakdown in atmospheric air between closely spaced (0.2 μm–40 μm) electrical contacts. IEEE Trans. Comp. Packaging Technol. 25 (3), 390–396.CrossRefGoogle Scholar
  66. 66.
    Wallash, A., Levit, L. (2003) Electrical breakdown and ESD phenomena for devices with nanometer-to-micron gaps. Proc. of SPIE 4980, 87–96.CrossRefGoogle Scholar
  67. 67.
    Chen, C.-H., Yeh, J.A., Wang, P.-J. (2006) Electrical breakdown phenomena for devices with micron separations. J. Micromech. Microeng. 16, 1366–1373.CrossRefGoogle Scholar
  68. 68.
    Strong, F.W., Skinner, J.L., Tien, N.C. (2008) Electrical discharge across micrometer-scale gaps for planar MEMS structures in air at atmospheric pressure. J. Micromech. Microeng. 18, 075025.CrossRefGoogle Scholar
  69. 69.
    Paschen, F. (1889) Über die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Annalen der Physik 273(5), 69–96.CrossRefGoogle Scholar
  70. 70.
    Townsend, J. (1915) Electricity in Gases. New York: Oxford University Press.Google Scholar
  71. 71.
    Braithwaite, N.St.J. (2000) Introduction to gas discharges. Plasma Sources Sci. Technol. 9, 517–527.Google Scholar
  72. 72.
    Osmokrovic, P., Vujisic, M., Stankovic, K., Vasic, A., Loncar, B. (2007) Mechanism of electrical breakdown of gases for pressures from 10-9 to 1 bar and inter-electrode gaps from 0.1 to 0.5 mm. Plasma Sources Sci. Technol. 16, 643–655.Google Scholar
  73. 73.
    Torres, J.-M., Dhariwal, R.S. (1999) Electric field breakdown at micrometre separations in air and vacuum. Microsyst. Technol. 6(1), November, 6–10, DOI 10.1007/s005420050166.Google Scholar
  74. 74.
    Carazzetti, P., Shea, H.R. (2009) Electrical breakdown at low pressure for planar MEMS devices with 10 to 500 micrometer gaps. J. Micro/Nanolithography, MEMS, and MOEMS 8(3), 031305.Google Scholar
  75. 75.
    Habermehl, S., Apodaca, R.T., Kaplar, R.J. (2009) On dielectric breakdown in silicon-rich silicon nitride thin films. Appl. Phys. Lett. 94, 012905.CrossRefGoogle Scholar
  76. 76.
    Amerasekera, A., Duvvury, C. (2002) ESD in Silicon Integrated Circuits, 2nd edn. New York: John Wiley and Sons.CrossRefGoogle Scholar
  77. 77.
    Walraven, J.A., Soden, J.M., Tanner, D.M., Tangyunyong, P., Cole Jr., E.I., Anderson, R.E., Irwin, L.W. (2000) Electrostatic discharge/electrical overstress susceptibility in MEMS: A new failure mode. Proceedings.Google Scholar
  78. 78.
    Ruan, J., Nolhier, N., Papaioannou, G.J., Trémouilles, D., Puyal, V., Villeneuve, C., Idda, T., Coccetti, F., Plana, R. Accelerated lifetime test of RF-MEMS switches under ESD stress. Microelectron. Reliability 49(9–11), 125.Google Scholar
  79. 79.
    Tazzoli, A., Peretti, V., Meneghesso, G. (2007) Electrostatic discharge and cycling effects on ohmic and capacitive RF-MEMS switches. IEEE Trans. Dev. Mater. Reliability 7(3), 429–436.CrossRefGoogle Scholar
  80. 80.
    Sangameswaran, S., Coster, J.D., Linten, D., Scholz, M., Thijs, S., Haspeslagh, L., Witvrouw, A., Hoof, C.V., Groeseneken, G., Wolf, I.D. (2008) ESD reliability issues in microelectromechanical systems (MEMS): A case study on micromirrors. Electric.Google Scholar
  81. 81.
    Krumbein, S.J. (1987) Metallic electromigration phenomena 33rd meeting of the IEEE Holm Conference on Electrical Contacts, Published by AMP Inc, 1989. http://www.tycoelectronics.com/documentation/whitepapers/pdf/p313-89.pdf
  82. 82.
    Black, J.R. (1969) IEEE Trans. Electron Dev. ED-16, 338.Google Scholar
  83. 83.
    Courbat, J., Briand, D., de Rooij, N.F. (2008) Sens. Actuators A 142, 284–291.CrossRefGoogle Scholar
  84. 84.
    Hon, M., DelRio, F.W., White, J.T., Kendig, M., Carraro, C., Maboudian, R. (2008) Cathodic corrosion of polycrystalline silicon MEMS. Sens. Actuators A: Phys. 145–146, July–August 2008, 323–329, DOI: 10.1016/j.sna.20Google Scholar
  85. 85.
    Stark, B. (1999) MEMS reliability assurance guidelines for space applications. JPL Publication 99-1. http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/18901/1/99-9001.pdf
  86. 86.
    Shea, H. (2006) Reliability of MEMS for space applications. Proc. of SPIE Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS V, Vol. 6111, 61110A. DOI:10.1117/12.651008.Google Scholar
  87. 87.
    “Handbook of radiation effects”, by A. Holmes-Siedle and L. Adams, Oxford University press, 2nd edition, 2002Google Scholar
  88. 88.
    European Cooperation for Space Standardization, document ESCC Basic Specification 22900 for Total Dose Steady-State Irradiation Test Method, available at: http://https://escies.org/ReadArticle?docId=229
  89. 89.
    European Cooperation for Space Standardization, document ESCC Basic Specification 25100 for Single Event Effects Test Method and Guidelines. Available at: http://https://escies.org/ReadArticle?docId=229
  90. 90.
    SPENVIS, the Space Environment Information System, http://www.spenvis.oma.be/
  91. 91.
    Shea, H. (2009) Radiation sensitivity of microelectromechanical system devices. J. Micro/Nanolith. MEMS MOEMS 8(3), 031303, Jul–Sep 2009.Google Scholar
  92. 92.
    European Space Agency Procedures Standards and Specifications, document ESA PSS-01-609 (May 1993) Radiation Design Handbook, available at: http://https://escies.org/ReadArticle?docId=263
  93. 93.
    European Cooperation for Space Standardization, document ECSS-E-ST-10-04C Space environment, available at: http://www.ecss.nl/forums/ecss/dispatch.cgi/standards/showFile/100700/d20081115082809/No/ECSS-E-ST-10-04C (15 November2008).pdf
  94. 94.
    Beasley, M. et al. (2004) MEMS thermal switch for spacecraft thermal control. Proc. SPIE 5344(98), DOI:10.1117/12.530906.Google Scholar
  95. 95.
    Pierron, O.N., Macdonald, D.D., Muhlstein, C.L. (2005) Galvanic effects in Si-based microelectromechanical systems: thick oxide formation and its implications for fatigue reliability. Appl. Phys. Lett. 86, 211919.CrossRefGoogle Scholar
  96. 96.
    Miller, D.C., Hughes, W.L., Wang, Z.L., Gall, K., Stoldt, C.R. (2006) Galvanic corrosion: a microsystems device integrity and reliability concern. Proc. SPIE 6111, 611105, DOI:10.1117/12.644932.Google Scholar
  97. 97.
    Coumar, O., Poirot, P., Gaillard, R., Miller, F., Buard, N., Marchand, L. Total dose effects and SEE screening on MEMS COTS accelerometers. Radiation Effects Data Workshop, 2004 IEEE 22 July 2004, 125–129.Google Scholar
  98. 98.
    Lee, C.I., Johnston, A.H., Tang, W.C., Barnes, C.E. (1996) Total dose effects on micromechanical systems (MEMS): accelerometers. IEEE Trans. Nucl. Sci. 43, 3127–3132.CrossRefGoogle Scholar
  99. 99.
    Knudson, A.R., Buchner, S., McDonald, P., Stapor, W.J., Campbell, A.B., Grabowski, K.S., Knies, D.L. (1996) The effects of radiation on MEMS accelerometers. IEEE Trans. Nucl. Sci. 43, 3122–3126.CrossRefGoogle Scholar
  100. 100.
    Edmonds, L.D., Swift, G.M., Lee, C.I. (1998) Radiation response of a MEMS accelerometers: an electrostatic force. IEEE Trans. Nucl. Sci. 45, 2779–2788.CrossRefGoogle Scholar
  101. 101.
    Schanwald, L.P. et al. (1998) Radiation effects on surface micromachined comb drives and microengines. IEEE Trans. Nucl. Sci. 45(6), 2789–2798.CrossRefGoogle Scholar
  102. 102.
    Holbert, K.E., Nessel, J.A., McCready, S.S., Heger, A.S., Harlow, T.H. (2003) Response of piezoresistive MEMS accelerometers and pressure transducers to high gamma dose. Nuclear Sci. IEEE Trans. 50(6), Part 1, Dec. 2003, 18.Google Scholar
  103. 103.
    McCready, S.S. et al. (2002) Piezoresistive micromechanical transducer operation in a pulsed neutron and gamma ray environment. IEEE Radiation Effects Data Workshop, 181–186.Google Scholar
  104. 104.
    Marinaro, D. et al. (2008) Proton radiation effects on MEMS silicon strain gauges. IEEE Trans. Nuclear Sci. 55(3), 1714.CrossRefGoogle Scholar
  105. 105.
    Quadri, G., Nicot, J.M., Guibaud, G., Gilard, O. (2005) Optomechanical microswitch behavior in a space radiation environment. IEEE Trans. Nuclear Sci. 52(5), 1795.CrossRefGoogle Scholar
  106. 106.
    Miyahira, T.F. et al. (2003 ) Total dose degradation of MEMS optical mirrors. IEEE Trans. Nuclear Sci. 50(6), Part 1, Dec. 2003, 1860–1866.Google Scholar
  107. 107.
    McClure, S., Edmonds, L., Mihailovich, R., Johnston, A., Alonzo, P., DeNatale, J., Lehman, J., Yui, C. (2002) Radiation effects in microelectromechanical systems (MEMS): RF relays. IEEE Trans. Nucl. Sci. 49, 3197–3202, Dec. 2002.CrossRefGoogle Scholar
  108. 108.
    Tazzoli, A., Cellere, G., Peretti, V., Paccagnella, A., Meneghesso, G. (2009) Radiation sensitivity of OHMIC RF-MEMS switches for spatial applications. Proc. IEEE Int. Conference Micro Electro Mechanical Syst. (MEMS).Google Scholar
  109. 109.
    Buchner, S. et al. (2007) Response of a MEMS microshutter operating at 60 K to ionizing radiation. IEEE Trans. Nuclear Sci. 54(6), 2463.CrossRefGoogle Scholar
  110. 110.
    Caffey, J.R., Kladitis, P.E. (2004) The effects of ionizing radiation on microelectromechanical systems (MEMS) actuators: electrostatic, electrothermal, and bimorph. Micro Electro Mech. Syst. 17th IEEE Int. Conference MEMS.Google Scholar
  111. 111.
    Son, C., Ziaie, B. (2008) An implantable wireless microdosimeter for radiation oncology. Proc. IEEE Conference Micro Electro Mech. Syst. (MEMS 2008), 256.Google Scholar
  112. 112.
    Schwartz, R.N. et al. (2000) Gamma-ray radiation effects on RF MEMS switches. Proc. 2000 IEEE Microelectron. Reliability Qualification Workshop, Oct. 2000, IV.6.Google Scholar
  113. 113.
    Zhu, S.-Y. et al. (2001) Total dose radiation effects of pressure sensors fabricated on Unibond-SOI materials. Nucl. Sci. Tech. 12, 209–214.Google Scholar
  114. 114.
    Lamhamdi, M. et al. (2006) Characterization of dielectric-charging effects in PECVD nitrides for use in RF MEMS capacitive switches. Proc of 7th International conference on RF MEMS and RF microsystems (MEMSWAVE) 2006.Google Scholar
  115. 115.
    Comizzoli, R.B. (1991) Surface Conductance on Insulators in the Presence of Water Vapor, in Materials Developments in Microelectronic Packaging: Performance and Reliability. Proceedings of the Fourth Electronic Materials and Processing Congress, 311Google Scholar
  116. 116.
    Lewerenz, H.J. (1992) Anodic oxides on silicon. Electrochimica Acta 37, 847–864.CrossRefGoogle Scholar
  117. 117.
    Perregaux, G., Gonseth, S., Debergh, P., Thiebaud, J.-P., Vuilliomenet, H. “Arrays of addressable high-speed optical microshutters” MEMS 2001. The 14th IEEE International Conference on MEMS, Jan 2001, 232–235.Google Scholar
  118. 118.
    Plass, R.A., Walraven, J.A., Tanner, D.M., Sexton, F.W. Anodic oxidation-induced delamination of the SUMMiT poly 0 to Silicon Nitride Interface. In R. Ramesham, D.M. Tanner (eds) Reliability, Testing, and Characterization of MEMS/MOEMS II; Proc. SPIE V.Google Scholar
  119. 119.
    Shea, H.R., White, C., Gasparyan, A., Comizzoli, R.B., Abusch-Magder, D., Arney, S. (2000) Anodic oxidation and reliability of poly-Si MEMS electrodes at high voltages and in high relative humidity, in MEMS Reliability for Critical Applications, R.A. Lawton Proc. SPIE, 4180, 117–122. DOI: 10.1117/12.395700Google Scholar
  120. 120.
    Plass, R., Walraven, J., Tanner, D., Sexton, F. (2003) Anodic oxidation-induced delamination of the SUMMiT poly 0 to silicon nitride interface. In Proc. SPIE, 4980, 81–86.CrossRefGoogle Scholar
  121. 121.
    Walker, J.A., Gabriel, K.J., Mehregany, M. (1990) Mechanical integrity of polysilicon films exposed to hydrofluoric acid solutions. In: Proceedings from IEEE MEMS, Napa Valley, CA, February 11–14, 56–60.Google Scholar
  122. 122.
    Chasiotis, I., Knauss, W.G. (2003) The mechanical strength of polysilicon films: part 1. The influence of fabrication governed surface conditions. J. Mech. Phys. Solids 51, 1533–1550.CrossRefGoogle Scholar
  123. 123.
    Sharpe, W.N., Brown, J.S., Johnson, G.C., Knauss W.G. (1998) Round-robin tests of modulus and strength of polysilicon. Materials Research Society Proceedings, Vol. 518, San Francisco, CA, pp. 57–65.Google Scholar
  124. 124.
    LaVan, D.A., Tsuchiya, T., Coles, G., Knauss, W.G., Chasiotis, I., Read, D. (2001) Cross comparison of direct strength testing techniques on polysilicon films. In Muhlstein, C., Brown, S.B. (eds) Mechanical Properties of Structural Films, ASTM STP.Google Scholar
  125. 125.
    Sinclair, J.D. (1988) Corrosion of electronics, the role of ionic substances. J. Electrochem. Soc. March 1988, p. 89C.Google Scholar
  126. 126.
    Yan, B.D., Meilink, S.L., Warren, G.W., Wynblatt, P. (1986) Proc. Electron. Components Conf., 36, 95.Google Scholar
  127. 127.
    Peck, D.S. (1986) Comprehensive model for humidity testing correlation. Annual Proceedings – Reliability Physics (Symposium), 44–50.Google Scholar
  128. 128.
    Bitko, G., Monk, D.J., Maudie, T., Stanerson, D., Wertz, J., Matkin, J., Petrovic, S. Analytical techniques for examining reliability and failure mechanisms of barrier-coated encapsulated silicon pressure sensors exposed.Google Scholar
  129. 129.
    Hamzah, A.A., Husaini, Y., Majlis, B.Y., Ahmad, I. (2008) Selection of high strength encapsulant for MEMS devices undergoing high-pressure packaging. Microsyst.Technol. 14(6), 766.CrossRefGoogle Scholar
  130. 130.
    Forehand, D.I., Goldsmith, C.L. (2005) Wafer Level Micropackaging for RF MEMS Switches. 2005 ASME InterPACK ‘05 Tech Conf, San Francisco, CA, July 2005.Google Scholar
  131. 131.
    Rebeiz, G.M. (2003) RF MEMS switches: status of the technology. Proceedings of Transducers 2003, The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, June 8–12, 1726.Google Scholar
  132. 132.
    Koons, H.C., Mazur, J.E., Selesnick, R.S., Blake, J.B., Fennell, J.F., Roeder, J.L., Anderson, P.C. (1670) The impact of the space environment on space systems. Aerospace Corp. report no. TR-99 (1670)-1, 20 July 1999.Google Scholar
  133. 133.
    George, T. (2003) Overview of MEMS/NEMS technology development for space applications at NASA/JPL. Proceedings of SPIE, Proc. SPIE Int. Soc. Opt. Eng. 5116, 136.Google Scholar
  134. 134.
    Eberl, C. et al. (2006) Ultra high-cycle fatigue in pure Al thin films and line structures. Mater. Sci. Eng. A, 421(1–2), 15 April 2006, 68–76.Google Scholar
  135. 135.
    Greywall, D. et al. (2003) Crystalline silicon tilting mirrors for optical cross-connect switches. IEEE/ASME Journal of Microelectromechanical Systems 12(5), 708Google Scholar
  136. 136.
    Arney, A., Gasparyan, A., Shea, H., SPIE Short course 434, Designing MEMS for reliability, presented at SemiCon West 2003, San Francisco, CA, USAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Allyson L. Hartzell
    • 1
  • Mark G. da Silva
    • 2
  • Herbert R. Shea
    • 3
  1. 1.Lilliputian Systems, Inc.WilmingtonUSA
  2. 2.RSTC, MS-112Analog Devices Inc.WilmingtonUSA
  3. 3.Microsystems for Space Technologies LaboratoryEPFLNeuchatelSwitzerland

Personalised recommendations