Skip to main content

Lifetime Prediction

  • Chapter
  • First Online:
MEMS Reliability

Part of the book series: MEMS Reference Shelf ((MEMSRS))

Abstract

Reliability continues to be one of the critical drivers for MEMS acceptance and growth. Emerging technologies require marketplace acceptance in order to be designed into high volume and critical applications. Thus, the field of reliability physics must be approached at the most fundamental level when evaluating and predicting micromachined product field performance over the lifetime of the product. The lifetime prediction portion of the reliability program is seen in Fig. 2.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guttman, I., Wilks, S.S., Hunter, J.S. (1982) Introductory Engineering Statistics. New York: John Wiley and Sons.

    Google Scholar 

  2. Nash, F.R. (1993) Estimating Device Reliability: Assessment of Credibility. Dordrecht: Kluwer Academic Publishers, p. 64, Springer Publishing, now copyright holder.

    Google Scholar 

  3. Klinger, D., Nakada, Y., Menendez, M. eds. (1990) AT&T Reliability Manual. New York: Van Nostrand Reinhold.

    Google Scholar 

  4. Dodson, B. (2006) The Weibull Analysis Handbook, 2nd edn. Milwaukee: American Society for Quality, Quality Press.

    Google Scholar 

  5. Tanner, D.M. et al. (2000) MEMS Reliability: Infrastructure, Test Structures, Experiments, and Failure Modes. Sandia Report SAND2000-0091, p. 78 (Courtesy Sandia National Laboratories, Radiation and Reliability Physics Dept., http://www.mems.sandia.gov)

  6. Courtesy of Sandia National Laboratories. SUMMiT(TM) Technologies, http://www.mems.sandia.gov, http://mems.sandia.gov/gallery/images.html

  7. Shea, H.R. (2006) Reliability of MEMS for space applications. In V. D.M. Tanner, R. Ramesham (eds) Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS. Proc. of SPIE Vol. 6111, 61110A.

    Google Scholar 

  8. Blish, R., Durrant, N. (2000) Semiconductor device reliability failure models. Int. Sematech. Technol. Transfer # 00053955A-XFR, May 31.

    Google Scholar 

  9. Blish, R., Huber. S., Durrant, N. (1999) Use condition based reliability evaluation of new semiconductor technologies. International Sematech Technology Transfer # 99083810A-XFR, August 31.

    Google Scholar 

  10. Planning, Developing and Managing an Effective Reliability and Maintainability (R&M) Program (1998) NASA-STD-8729.1, National Aeronautics and Space Administration, December 1998.

    Google Scholar 

  11. FLA (1986) Standard Mathematical Tables, 26th edn. Boca Raton: CRC Press, p. 548.

    Google Scholar 

  12. Janghorban, S. et al. (1991) Deformation-mechanism map for Ti-6 wt% Al Alloy. J. Mater. Sci. 26, 3362–3365.

    Article  Google Scholar 

  13. Dieter, G.E. (1986) Mechanical Metallurgy. New York: McGraw-Hill, Inc.

    Google Scholar 

  14. Weertman, J. (1956) J. Mech Phys Sol. 4, 230.

    Article  Google Scholar 

  15. Weertman, J. (1960) Trans. AIME 218, 207.

    Google Scholar 

  16. Weertman, J. (1963) Trans. AIME 227, 1475.

    Google Scholar 

  17. Ashby, M.F. (1972) Acta Met. 20, 887–897.

    Article  Google Scholar 

  18. Frost, H.J., Ashby, M.F. (1982) Deformation-mechanism maps. New York: Pergamon Press.

    Google Scholar 

  19. Douglass, M.R. (2003) DMD reliability: a MEMS success story. In R. Ramesham, D. Tanner (eds) Reliability, Testing and Characterization of MEMS/MOEMS II. Proceedings of SPIE Vol. 4980, SPIE.

    Google Scholar 

  20. Douglass, M.R. (1998) Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD). Reliability Physics Symposium; 1998 IEEE International Volume, Issue 31.

    Google Scholar 

  21. Sonheimer, A. (2002) Digital micromirror device (DMD) hinge memory lifetime reliability modeling. IEEE 40th Annual International Reliability Physics Symposium, Dallas Texas.

    Google Scholar 

  22. Chau, K., Sulouff, R. (1998) Technology for the high-volume manufacturing of integrated surface-micromachined accelerometer products. Microelectron. J. 29, 579–586.

    Article  Google Scholar 

  23. Hartzell, A., Woodilla. D. (1999) Reliability methodology for prediction of micromachined accelerometer stiction. 37th International Reliability Physics Symposium (IRPS), San Diego, California. p. 202.

    Google Scholar 

  24. Hartzell, A. et al. (2001) MEMS reliability, characterization, and test. In R. Ramesham (ed) Reliability, Testing, and Characterization of MEMS/MOEMS. Proc. SPIE Vol. 4558, pp. 1–5.

    Google Scholar 

  25. Peterson, K. E. (1979) Micromechanical membrane switches on silicon. IBM J. Res. Develop. 23(4), 376–385, July 1979.

    Article  Google Scholar 

  26. Yuan, X., Hwang, J.C.M., Forehand, D., Goldsmith, C.L. (2005) Modeling and characterization of dielectric-charging effects in RF MEMS capacitive switches. IEEE Int. Microwave Symp. paper WE3B-3, June 2005.

    Google Scholar 

  27. Yao, Z.J., Chen, S., Eshelman, S., Denniston, D., Goldsmith, C. (1999) Micromachined low-loss microwave switches. J. Microelectromech. Syst. 8(2), 129–134, June 1999.

    Article  Google Scholar 

  28. Goldsmith, C.L., Forehand, D., Scarbrough, D., Peng, Z., Palego, C., Hwang, J.C.M., Clevenger, J. (2008) Understanding and improving longevity in RF MEMS capacitive switches. Proc. Int. Soc. Optical Eng. 6884(03), Feb 2008

    Google Scholar 

  29. Van Spengen, W.M., Puers, R., Mertens, R., De Wolf, I. (2004) A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches. J. Micromech. Microeng. 14(4), 514–521.

    Article  Google Scholar 

  30. Peng, Z., Palego, C., Hwang, J.C.M., Moody, C., Malczewski, A., Pillans, B., Forehand, D., Goldsmith, C. (2009) Effect of packaging on dielectric charging in RF MEMS capacitive switches. IEEE Int. Microwave Symp. Dig., 1637–1640, June 2009.

    Google Scholar 

  31. Goldsmith, C., Ehmke, J., Malczewski, A., Pillans, B., Eshelman, S., Yao, Z., Brank, J., Eberly, M. (2001) Lifetime characterization of capacitive RF MEMS switches. IEEE Int. Microwave Symp. 1, 227–230, May 2001.

    Google Scholar 

  32. Peng, Z., Palego, C., Hwang, J.C.M., Forehand, D., Goldsmith, C., Moody, C., Malczewski, A., Pillans, B., Daigler, R., Papapolymerou, J. (2009) Impact of humidity on dielectric charging in RF MEMS capacitive switches. IEEE Microwave Wireless Comp. Lett. 19(5), 299–301, May 2009.

    Article  Google Scholar 

  33. Forehand, D.I., Goldsmith, C.L. (2005) Wafer level micropackaging for RF MEMS switches. ASME InterPACK ‘05 Tech Conf, San Francisco, CA, July 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allyson L. Hartzell .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hartzell, A.L., da Silva, M.G., Shea, H.R. (2011). Lifetime Prediction. In: MEMS Reliability. MEMS Reference Shelf. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6018-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6018-4_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6017-7

  • Online ISBN: 978-1-4419-6018-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics