Closed-Loop Production Systems

  • Athulan Vijayaraghavan
  • Chris Yuan
  • Nancy Diaz
  • Timo Fleschutz
  • Moneer Helu


This chapter discusses the closed-loop aspects of production systems in the context of green and sustainable manufacturing. Specifically, we consider the life cycle of production systems from design and construction through use, decommissioning, and recycling or repurposing. We discuss resource and economic efficiency and present a series of examples of life cycle analysis of manufacturing systems. We also describe how to design systems for reduced life cycle impact. Examples include comparisons of different machine tool systems, process parameter optimization, consumable utilization, plant services, and plant design.


Feed Rate Machine Tool Tool Wear Computer Numerical Control Minimum Quantity Lubrication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Emblemsvag J (2003) Life cycle costing: using activity based costing and Monte Carlo simulation to manage future costs and risks. Wiley, New JerseyGoogle Scholar
  2. 2.
    Harms R, Fleschutz T, Seliger G (2008) Knowledge based approach to assembly system reuse. Proceedings of the ninth biennial ASME conference on engineering systems design and analysis ESDAGoogle Scholar
  3. 3.
    Woodward D (1997) Life cycle costing—theory, information acquisition and application. Int J Project Manag 15(6):335–344CrossRefGoogle Scholar
  4. 4.
    Ferry DJO, Flanagan R (1991) Life cycle costing a radical approach. Construction Industry Research and Information Association, LondonGoogle Scholar
  5. 5.
    Jolliet O, Dubreuil D, Gloria T, Hauschild M (2005) Progress in life cycle impact assessment within the UNEP/SETAC life cycle initiative. Int J LCA 10(6):447–448CrossRefGoogle Scholar
  6. 6.
    Seliger G (ed) (2007) Sustainability in manufacturing—recovery of resources in product and material cycles. Springer, BerlinGoogle Scholar
  7. 7.
    Jovane F, Yoshikawa H, Alting L, Boer CR, Westkamper E, Williams D, Tseng M, Seliger G, Paci AM (2008) The incoming global technological and industrial revolution towards competitive sustainable manufacturing. CIRP Ann Manuf Technol 57:641–659CrossRefGoogle Scholar
  8. 8.
    Wiendahl HP, ElMaraghy H, Nyhuis P, Zдh M, Wiendahl HH, Duffie N, Brieke M (2007) Changeable manufacturing—classification, design and operation. CIRP Ann Manuf Technol 56:783–809CrossRefGoogle Scholar
  9. 9.
    Koren Y (2005) Reconfigurable manufacturing and beyond. CIRP third international conference on reconfigurable manufacturing systems, Keynote paperGoogle Scholar
  10. 10.
    Dashchenko A (ed) (2005) Reconfigurable manufacturing systems and transformable factories. Springer, BerlinGoogle Scholar
  11. 11.
    Takata S, Kirnura F, van Houten F, Westkämper E, Shpitalni M, Ceglarek D, Lee J (2004) Maintenance: changing role in life cycle management. CIRP Ann Manuf Technol 53(2):643–655CrossRefGoogle Scholar
  12. 12.
    Fleschutz T, Harms R, Selgier G (2009) Valuation of assembly equipment reuse with real options. proceedings of production and operations mangement society conference (POMS) 20th annual conference, Orlando, FloridaGoogle Scholar
  13. 13.
    Fleschutz T, Harms R, Seliger G, Rusina F, Bottero F (2008) Evaluation of the reconfiguration and reuse of assembly equipment. Proceedings of second cirp conference on assembly technology and systems, University of Windsor, TorontoGoogle Scholar
  14. 14.
    Fleschutz T (2009) Beruecksichtigung der oekologischen Dimension in Investitionsentscheidungen bei Montageanlagen. Oekobilanzierung 2009: Ansaetze und Weiterentwicklungen zur Operationalisierung von Nachhaltigkeit, KIT, Karlsruhe, Germany, 157–166Google Scholar
  15. 15.
    Wuppertal Institute for Climate, Environment and Energy (2009) Research for sustainable development. Accessed 7 Jan 2011
  16. 16.
    PRé Consultants (2011) SimaPro software. Accessed 7 Jan 2011
  17. 17.
    Shimoda M (2002) LCA case of machine tool. Symposium 2002 of the Japan Society for Precision Engineering Spring Annual Meeting, pp 37–41Google Scholar
  18. 18.
    Diaz N, Helu M, Jayanathan S, Chen Y, Horvath A, Dornfeld D (2010) Environmental analysis of milling machine tool use in various manufacturing environments. IEEE international symposium on sustainable systems and technology, Laboratory for Manufacturing and Sustainability, Berkeley
  19. 19.
    Dornfeld D, Lee DE (2007) Precision manufacturing. Springer, New YorkGoogle Scholar
  20. 20.
    Jovane F, Alting L, Armillotta A, Eversheim W, Feldmann K, Seliger G, Roth N (1993) A key issue in product life cycle: disassembly and the environment. Ann CIRP 42(2):651–658CrossRefGoogle Scholar
  21. 21.
    Harjula T, Rapoza B, Knight WA, Boothroyd B (1996) Design for disassembly and the environment. Ann CIRP 45(1):109–114CrossRefGoogle Scholar
  22. 22.
    Ilgin MA, Gupta SM (2010) Environmentally conscious manufacturing and product recovery (ECMPRO): a review of the state of the art. J Environ Manag 91(3):563–591CrossRefGoogle Scholar
  23. 23.
    Dhar NR, Kamruzzaman M, Ahmed M (2006) Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. J Mater Process Technol 172:299–304CrossRefGoogle Scholar
  24. 24.
    Weinert K, Inasaki I, Sutherland JW, Wakabayashi T (2004) Dry machining and minimum quantity lubrication. Ann CIRP 53(2):511–537CrossRefGoogle Scholar
  25. 25.
    Klocke F, Eisenblatter G (1997) Dry cutting. Ann CIRP 46(2):519–527CrossRefGoogle Scholar
  26. 26.
    Munoz AA, Sheng P (1995) An analytical approach for determining the environmental impact of machining processes. J Mater Process Technol 53(3):736–758CrossRefGoogle Scholar
  27. 27.
    Krishnan N, Sheng PS (2000) Environmental versus conventional planning for machined components. Ann CIRP 49(1):363–366CrossRefGoogle Scholar
  28. 28.
    Narita H, Kawamura H, Norihisa T, Chen LY, Fujimoto H, Hasebe T (2006) Development of prediction system for environmental burden for machine tool operation. JSME Int J Series C 49(4):1188–1195CrossRefGoogle Scholar
  29. 29.
    Narita H, Desmira N, Fujimoto H (2008) Environmental burden analysis for machining operation using LCA method. Proceedings of the 41st CIRP conference on manufacturing systemsGoogle Scholar
  30. 30.
    Dahmus JB, Gutowski TG (2004) An environmental analysis of machining. Proceedings of the 2004 ASME international mechanical engineering congress and RD&D expo. Anaheim, CaliforniaGoogle Scholar
  31. 31.
    Taniguchi M, Kakinuma Y, Aoyama T, Inasaki I (2006) Influences of downsized design for machine tools on the environmental impact. Proceedings of the MTTRF 2006 annual meetingGoogle Scholar
  32. 32.
    Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. Proceedings of the 13th CIRP international conference on life cycle engineering, pp 623–627Google Scholar
  33. 33.
    Ashby MF (2009) Materials and the environment: eco-informed material choice. Butterworth-Heinemann, Burlington, MAGoogle Scholar
  34. 34.
    Kalpakjian S (1996) Manufacturing processes for engineering materials. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  35. 35.
    Haapala K, Rivera JL, Sutherland J (2009) Reducing environmental impacts of steel product manufacturing. Trans North Am Manuf Res Instit SME 37:419–426Google Scholar
  36. 36.
    Baniszewski B (2005) An environmental impact analysis of grinding. SB thesis. Dep Mech Eng Massachusetts Institute of Technology, Cambridge, MAGoogle Scholar
  37. 37.
    Independent System Operators (ISO) New England (2010) Connecticut: 2010 State Profile. Accessed 11 Oct 2010
  38. 38.
    Fthenakis VM, Kim HC (2007) Greenhouse gas emissions from solar electric and nuclear power: a life-cycle study. Energy Policy 35(4):2549–2557CrossRefGoogle Scholar
  39. 39.
    Pacca S, Horvath A (2002) Greenhouse gas emissions from building and operating electric power plants in the upper colorado river basin. Environ Sci Technol 36(14):3194–3200CrossRefGoogle Scholar
  40. 40.
    Hondo H (2005) Life cycle GHG emission analysis of power generation systems: Japanese case. Energy 30(11–12):2042–2056CrossRefGoogle Scholar
  41. 41.
    Nyberg M (2009) 2008 Net system power report. California Energy Commission. CEC-200-2009-010Google Scholar
  42. 42.
    Gagnon L, Bélanger C, Uchiyama Y (2002) Life-cycle assessment of electricity generation options: the status of research in year 2001. Energy Policy 30(14):1267–1278CrossRefGoogle Scholar
  43. 43.
    Diaz N, Helu, M, Jarvis A, Toenissen S, Dornfeld D, Schlosser R (2009) Strategies for minimum energy operation for precision machining. Proceedings of machine tool technologies research foundation 2009 annual meetingGoogle Scholar
  44. 44.
    Tawakoli T, Hadad MJ, Sadeghi MH, Daneshi A, Stöckert S, Rasifard A (2009) An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication—MQL grinding. Int J Mach Tools Manuf 49:924–932CrossRefGoogle Scholar
  45. 45.
    Wakabayashi T, Inasaki I, Suda S (2006) Tribological action and optimal performance: research activities regarding MQL machining fluids. J Machining Sci Technol Special Issue Environmentally-Conscious Machining 10(1):59–85Google Scholar
  46. 46.
    Sreejith P, Ngoi B (2000) Dry machining: machining of the future. J Mater Process Technol 101:287–291CrossRefGoogle Scholar
  47. 47.
    Shefelbine W, Dornfeld DA (2004) The effect of dry machining on burr size. Laboratory for Manufacturing and Sustainability, Berkeley, UC. Accessed 8 Oct 2010
  48. 48.
    Aoyama T, Kakinuma Y, Yamashita M, Aoki M (2008) Development of a new lean lubrication system for near dry machining process. Ann CIRP 57:125–128CrossRefGoogle Scholar
  49. 49.
    Thierry M, Salomon M, van Nunen J, Van Wassenhove LN (1995) Strategic issues in product recovery management. Calif Manag Rev 37(2):114–135CrossRefGoogle Scholar
  50. 50.
    Beamon BM (1999) Designing the green supply chain. Logist Inform Manag 12(4):332–342CrossRefGoogle Scholar
  51. 51.
    VDI 2243 (2002) Recycling-oriented product development. Beuth, BerlinGoogle Scholar
  52. 52.
    Ijomah WL, Bennett JP, Pearce J (1999) Remanufacturing: evidence of environmentally conscious business practice in the UK. First international symposium on environmentally conscious design and inverse manufacturing. DOI 10.1109/ECODIM.1999.747607Google Scholar
  53. 53.
    Amezquita T, Hammond R, Salazar M, Bras B (1995) Characterizing the remanufacturability of engineering systems. ASME Design Technical Engineering Conferences, Boston, pp 271–278Google Scholar
  54. 54.
    Lund RT (1996) The remanufacturing industry: hidden giant. Boston University, Boston, MAGoogle Scholar
  55. 55.
    Nasr N, Thurston M (2006) Remanufacturing: a key enabler to sustainable product systems. Thirteenth CIRP international conference on life cycle engineering, Leuven, BelgiumGoogle Scholar
  56. 56.
    Östlin J (2008) On remanufacturing systems: analysing and managing material flows and remanufacturing processes. Dissertation, Linköpings UniversitetGoogle Scholar
  57. 57.
    Sundin E, Tang O, Marten E (2005) The Swedish remanufacturing industry: an overview of present status and future potential. Twelfth CIRP international conference on life cycle engineering, Grenoble, FranceGoogle Scholar
  58. 58.
    Östlin J (2005) Material and process complexity—implications for remanufacturing. Fourth international symposium on environmentally conscious design and inverse manufacturing, Tokyo, JapanGoogle Scholar
  59. 59.
    Fleischmann M, Krikke HR, Dekker M, Flapper SD (2000) A characterisation of logistics networks for product recovery. Omega Int J Manag Sci 28:653–666CrossRefGoogle Scholar
  60. 60.
    Caterpillar US Website (2009) Company website. Accessed 9 Jan 2009
  61. 61.
    Caterpillar (2008) Caterpillar Remanufacturing Singapore Overview. Presentation. Accessed 9 Jan 2009
  62. 62.
    ABB Ltd (2010) Automation division. ABB Certified Refurbished Robot. Available at$File/ABB. Certified Refurbished Robot v4_final.pdf. Accessed 21 April 2009
  63. 63.
    Morel MK (2006) Refurbished robots can save replacement costs. Robotics World 24(1):4–7Google Scholar
  64. 64.
    Steinhilper R (1998) Remanufacturing: The ultimate form of recycling. Fraunhofer IRB Verlag, Stuttgart, GermanyGoogle Scholar
  65. 65.
    Weule H, Buchholz C (2001) Method for the assessment of reuse suitability within modular assembly systems. Assembly Automation 21(3):241–246CrossRefGoogle Scholar
  66. 66.
    Schmälzle A (2001) Bewertungssystem für die Generalüberholung von Montageanlagen: Ein Beitrag zur wirtschaftlichen Gestaltung geschlossener Facility-Management-Systeme im An-lagenbau, Dissertation, Universität KarlsruheGoogle Scholar
  67. 67.
    Ford Motor Company (2011) Company website. Accessed 7 Jan 2011
  68. 68.
    Sweeney R (2002) Cutting the cost of compressed air. Machine Design 74(21):76Google Scholar
  69. 69.
    Risi JD (1995) Energy savings with compressed air. Energy Eng J Assoc Energy Eng 92(6):49–58Google Scholar
  70. 70.
    Kaya AD, Phelan P, Chau D, Sarac HI (2002) Energy conservation in compressed air systems. Int J Energy Res 26:837–849CrossRefGoogle Scholar
  71. 71.
    Curtner KL, O’Neill PJ, Winter D, Bursch P (1997) Simulation-based features of the compressed air system description tool, XCEEDTM. Proc Intl Building Performance Simulation Assoc Conf, Prague, Czech Republic, September 8–10Google Scholar
  72. 72.
    Yuan C, Zhang T, Rangarajan A, Dornfeld D, Ziemba W, Whitnbeck R (2006) A decision-based analysis of compressed air usage patterns in automotive manufacturing. SME J Manuf Syst 25(4):293–300CrossRefGoogle Scholar
  73. 73.
    Cox R (1996) Compressed air—clean energy in a green world. Glass Int 19(2):2Google Scholar
  74. 74.
    Foss RS (2002) Managing compressed air energy part I: demand side issues. Maintenance technology online. Accessed 26 May 2006

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Athulan Vijayaraghavan
    • 1
  • Chris Yuan
    • 2
  • Nancy Diaz
    • 3
  • Timo Fleschutz
    • 4
  • Moneer Helu
    • 3
  1. 1.System InsightsBerkeleyUSA
  2. 2.Department of Mechanical EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  3. 3.Laboratory for Manufacturing and Sustainability (LMAS), Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of Assembly Technology and Factory ManagementInstitute for Machine Tools and Factory Management (IWF)BerlinGermany

Personalised recommendations