Advertisement

Remarks on Solution Verification and Model Validation of Hemodynamic Simulations

  • Marc Garbey
  • Mark G. Davies
Conference paper

Abstract

The goal of this paper is to discuss some of the solution verification and validation challenges in hemodynamic simulation. Today the objective of hemodynamics is to efficiently provide reliable patient specific simulation to optimize cardiovascular procedures such as, for example, heart valve replacement or abdominal aorta aneurysm stenting. Achieving this objective requires a clear understanding of (1) what model should be valid to start a simulation; this is model validation, (2) how much numerical error the simulation carries; this is solution verification. Image acquisition and inflow-outflow boundary conditions bring a third source of uncertainties. We will discuss some of these issues in this paper. We will argue finally that perhaps the ability to run systematically and quickly patient specific hemodynamic simulation to build large data bases might be the best way to provide statistically valid indicators for better clinical practice.

Keywords

Solution verification Validation PDEs Navier Stokes Aposteriori estimate Extrapolation Distributed computing 

References

  1. 1.
    Chandran KB, Yoganathan AP, Rittgers SE (2007) Biofluids: the human circulation. CRC/Taylor & Francis, Boca RatonGoogle Scholar
  2. 2.
    Kleinstreuer C (2006) Biofluid dynamics: principles and selected applications. CRC/Taylor & FrancisGoogle Scholar
  3. 3.
    Oberkampf WL, Trucano TG (2002) Verification and validation in computational fluid dynamics. Technical report, Sandia National LaboratoryCrossRefGoogle Scholar
  4. 4.
    Journal of Fluids Engineering Editorial Policy Statement on the Control of Numerical Accuracy (1991) http://journaltool.asme.org/Templates/JFENumAccuracy.pdf
  5. 5.
    Machiels L, Peraire J, Patera AT (2001) A posteriori finite element output bounds for incompressible Navier Stokes equations: application to a natural convection problem. J Comput Phys 172(2):401–425MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Oden T (2002) A posteriori error estimation. In: Hans Maier (ed) Verification and validation in computational solid mechanics. ASME/USACM StandardsGoogle Scholar
  7. 7.
    Roache PJ (2002) Code verification by the method of manufactured solutions. J Fluids Eng 124:4–10CrossRefGoogle Scholar
  8. 8.
    Roache PJ (1998) Verification and validation in computational science and engineering. Hermosa Publishers, Albuquerque, New MexicoGoogle Scholar
  9. 9.
    Garbey M, Shyy W (2005) A least square extrapolation method for the a posteriori error estimate of the incompressible Navier Stokes problem. Int J Numer Methods Fluids 48:43–59MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Garbey M, Picard C (2008) A code-independent technique for computational verification of fluid mechanics and heat transfer problems. Acta Mech Sin 24:387–397MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hwang M, Garbey M, Berceli SA, Tran Son tay R (2009) Ruled-based simulation of multi-cellular biological systems – a review of modeling techniques. Cell Mol Bioeng 2(3):285–295Google Scholar
  12. 12.
    Berceli SA, Tran-Son-Tay R, Garbey M, Jiang Z (2009) Hemodynamically driven vein graft remodeling: a systems biology approach. Vascular 17(S1):24–31Google Scholar
  13. 13.
    Tran-Son-Tay R, Hwang M, Garbey M, Jiang Z, Ozaki CK Berceli SA (2008) Experiment-based model of vein graft remodeling induced by shear stress. Ann Biomed Eng 36(7):1083–1091Google Scholar
  14. 14.
    Bale-Blickman J, Selby K, Saloner D, Savas O (2003) Experimental flow studies in exact-replica phantoms of atherosclerotic carotid bifurcations under steady input conditions. Trans ASME 125:38–48Google Scholar
  15. 15.
    Glor FP, Long Q, Hugues AD, Augst AD, Ariff B, Thom SA, Verdonck PR, Xu XY (2003) Reproducibility of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Ann Biomed Eng 31:142–151CrossRefGoogle Scholar
  16. 16.
    Chang CP, Parker D, Taylor C (2002) Quantification of wall shear stress in large blood vessels using Lagrangian interpolation functions with cine phase-contrast magnetic resonance imaging. Ann Biomed Eng 30:1020–1032CrossRefGoogle Scholar
  17. 17.
    Moore JA, Steinman DA, Holdsworth DW, Ether CR (1999) Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging. Ann Biomed Eng 27:32–41CrossRefGoogle Scholar
  18. 18.
    Thomas JB, Milner JS, Rutt BK, Steinman DA (2003) Reproductibility of image-based computational fluid dynamics models of the human carotid bifurcation. Ann Biomed Eng 31:132–141CrossRefGoogle Scholar
  19. 19.
    Moore JA, Guggenheim N, Delfino A, Doriot PA, Dorsaz PA, Rutishauer W, Meister JJ (1994) Preliminar effect analysis of the effects of blood vessel movement on blood flow patterns in the coronary arteries. J Biomech Eng 116:302–306CrossRefGoogle Scholar
  20. 20.
    Perktold K, Rappitsch G (1995) Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech Eng 113:845–856Google Scholar
  21. 21.
    Taylor CA, Hugues TJR, Zarins CK (1999) Effect of exercice on hemodynamic conditions in the abdominal aorta. J Vasc Surg 29:1077–1089CrossRefGoogle Scholar
  22. 22.
    Younis HF, Kaazempur-Mofrad MR, Chung C, Chan RC, Kamm RD (2003) Computational analysis of the effects of exercice on hemodynamics in the carotid bifurcation. Ann Biomed Eng 31:995–1006CrossRefGoogle Scholar
  23. 23.
    Garbey M, Pacull F (2007) A versatile incompressible Navier Stokes solver for blood flow application. Int J Numer Methods Fluids 54(5):473–496MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Garbey M, Hadri B, Hilford V, Karmonik C (2007) Parallel Image-Based Hemodynamic Simulator. proceeding of ICSNC07, workshop HPC-Bio07, France, 2007. http://www.computer.org/portal/web/csdl/doi/10.1109/ICSNC.2007.58

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of HoustonHoustonUSA

Personalised recommendations