Advertisement

Imaging and Navigation

Conference paper

Abstract

The ability to identify a target through imaging and to navigate hollow tubes are core competencies in both cardiovascular medicine and in the oil and gas business. The imaging modalities used in the cardiovascular space include: ultrasound, fluoroscopy, magnetic resonance imaging, and computed tomography scanning. The essential components integral to imaging and navigation are high-resolution imaging, spatial awareness and ability to steer that device. The combination of imaging technology with catheter robotics will revolutionize the ability to navigate catheters in three dimensions, remotely or semi automatically over predetermined “glide paths” in the body, improving accuracy, safety and patient outcomes.

Keywords

Imaging Fluoroscopy Magnetic resonance imaging Computed tomography Ultrasound Angiography Robotics 

References

  1. 1.
    Benvenuti L, Chibbaro S, Carnesecchi S, Pulerà F, Gagliardi R (2005) Automated three-dimensional volume rendering of helical computed tomographic angiography for aneurysms: an advanced application of neuronavigation technology. Neurosurgery 57(1 Suppl):69–77, discussion 69–77CrossRefGoogle Scholar
  2. 2.
    Chibbaro S, Tacconi L (2006) Image-guided microneurosurgical management of vascular lesions using navigated computed tomography angiography. An advanced IGS technology application. Int J Med Robot 2(2):161–167, ReviewCrossRefGoogle Scholar
  3. 3.
    Gutiérrez LF, Silva R, Ozturk C, Sonmez M, Stine AM, Raval AN, Raman VK, Sachdev V, Aviles RJ, Waclawiw MA, McVeigh ER, Lederman RJ (2007) Technology preview: X-ray fused with magnetic resonance during invasive cardiovascular procedures. Catheter Cardiovasc Interv 70(6):773–782CrossRefGoogle Scholar
  4. 4.
    Heran NS, Song JK, Namba K, Smith W, Niimi Y, Berenstein A (2006) The utility of DynaCT in neuroendovascular procedures. AJNR Am J Neuroradiol 27(2):330–332Google Scholar
  5. 5.
    Irie K, Murayama Y, Saguchi T, Ishibashi T, Ebara M, Takao H, Abe T (2008) Dynact soft-tissue visualization using an angiographic C-arm system: initial clinical experience in the operating room. Neurosurgery 62(3 Suppl 1):266–272, discussion 72CrossRefGoogle Scholar
  6. 6.
    Meyer BC, Frericks BB, Albrecht T, Wolf KJ, Wacker FK (2007) Contrast-enhanced abdominal angiographic CT for intra-abdominal tumor embolization: a new tool for vessel and soft tissue visualization. Cardiovasc Intervent Radiol 30(4):743–749CrossRefGoogle Scholar
  7. .
    Suggested Reading Atmakuri SR, Lev EI, Alviar C, Ibarra E, Raizner AE, Solomon SL, Kleiman NS (2006) Initial experience with a magnetic navigation system for percutaneous coronary intervention in complex coronary artery lesions. J Am Coll Cardiol 47(3):515–521CrossRefGoogle Scholar
  8. .
    Buergler JM, Alam S, Spencer W, Kleiman NS, Melendez Y, Franklin J, Nagueh SF (2007) Initial experience with alcohol septal ablation using a novel magnetic navigation system. J Interv Cardiol 20(6):559–563CrossRefGoogle Scholar
  9. .
    Di Biase L, Wang Y, Horton R, Gallinghouse GJ, Mohanty P, Sanchez J, Patel D, Dare M, Canby R, Price LD, Zagrodzky JD, Bailey S, Burkhardt JD, Natale A (2009) Ablation of atrial fibrillation utilizing robotic catheter navigation in comparison to manual navigation and ablation: single-center experience. J Cardiovasc Electrophysiol 20(12):1328–1335CrossRefGoogle Scholar
  10. .
    Karmonik C, Bismuth J, Davies MG, Lumsden AB (2009) Computational fluid dynamics as a tool for visualizing hemodynamic flow patterns. Methodist Debakey Cardiovasc J 5(3):26–33Google Scholar
  11. .
    Karmonik C, Bismuth J, Davies MG, Lumsden AB (2008) Computational hemodynamics in the human aorta: a computational fluid dynamics study of three cases with patient-specific geometries and inflow rates. Technol Health Care 16(5):343–354Google Scholar
  12. .
    Karmonik C, Bismuth J, Davies MG, Younes HK, Lumsden AB (2009) An image processing algorithm for the in-vivo quantification and visualization of septum motion in type III B – aortic dissections with cine magnetic resonance imaging. Conf Proc IEEE Eng Med Biol Soc 2009:4391–4394Google Scholar
  13. .
    Koschyk DH, Nienaber CA, Knap M, Hofmann T, Kodolitsch YV, Skriabina V, Ismail M, Franzen O, Rehders TC, Dieckmann C, Lund G, Reichenspurner H, Meinertz T (2005) How to guide stent-graft implantation in type B aortic dissection? Comparison of angiography, transesopha-geal echocardiography, and intravascular ultrasound. Circulation 112(9 Suppl):1260–1264Google Scholar
  14. .
    Latcu DG, Ricard P, Zarqane N, Yaici K, Rinaldi JP, Maluski A, Saoudi N (2009) Robotic magnetic navigation for ablation of human arrhythmias: initial experience. Arch Cardiovasc Dis 102(5):419–425CrossRefGoogle Scholar
  15. .
    Malhotra SP, Le D, Thelitz S, Hanley FL, Riemer RK, Suleman S, Reddy VM (2002) Robotic-assisted endoscopic thoracic aortic anastomosis in juvenile lambs. Heart Surg Forum 6(1):38–42Google Scholar
  16. .
    Martinez BD, Wiegand CS (2004) Robotics in vascular surgery. Am J Surg 188(4A Suppl):57S–62SCrossRefGoogle Scholar
  17. .
    Mohr FW, Falk V, Diegeler A, Walther T, Gummert JF, Bucerius J, Jacobs S, Autschbach R (2001) Computer-enhanced “robotic” cardiac surgery: experience in 148 patients. J Thorac Cardiovasc Surg 121(5):842–853CrossRefGoogle Scholar
  18. .
    Raizner AE (2007) Magnetic navigation: a pivotal technology. Catheter Cardiovasc Interv 69(6):856CrossRefGoogle Scholar
  19. .
    Riga C, Bicknell C, Cheshire N, Hamady M (2009) Initial clinical application of a robotically steerable catheter system in endovascular aneurysm repair. J Endovasc Ther 16(2):149–153CrossRefGoogle Scholar
  20. .
    Riga CV, Bicknell CD, Wallace D, Hamady M, Cheshire N (2009) Robot-assisted antegrade in-situ fenestrated stent grafting. Cardiovasc Intervent Radiol 32(3):522–524CrossRefGoogle Scholar
  21. .
    Ruurda JP, Wisselink W, Cuesta MA, Verhagen HJ, Broeders IA (2004) Robot-assisted versus standard videoscopic aortic replace- ment. A comparative study in pigs. Eur J Vasc Endovasc Surg 27(5):501–506CrossRefGoogle Scholar
  22. .
    Saliba W, Reddy VY, Wazni O, Cummings JE, Burkhardt JD, Haissaguerre M, Kautzner J, Peichl P, Neuzil P, Schibgilla V, Noelker G, Brachmann J, Di Biase L, Barrett C, Jais P, Natale A (2008) Atrial fibrillation ablation using a robotic catheter remote control system: initial human experience and long-term follow-up results. J Am Coll Cardiol 51(25):2407–2411CrossRefGoogle Scholar
  23. .
    Schmidt B, Chun KR, Tilz RR, Koektuerk B, Ouyang F, Kuck KH (2008) Remote navigation systems in electrophysiology. Europace 10(Suppl 3):ii57–iii61, ReviewGoogle Scholar
  24. .
    Steven D, Servatius H, Rostock T, Hoffmann B, Drewitz I, Müllerleile K, Sultan A, Aydin MA, Meinertz T, Willems S (2010) Reduced fluoroscopy during atrial fibrillation ablation: benefits of robotic guided navigation. J Cardiovasc Electrophysiol 21(1):6–12CrossRefGoogle Scholar
  25. .
    Wazni OM, Barrett C, Martin DO, Shaheen M, Tarakji K, Baranowski B, Hussein A, Callahan T, Dresing T, Bhargava M, Kanj M, Tchou P, Natale A, Saliba W (2009) Experience with the Hansen robotic system for atrial fibrillation ablation - lessons learned and techniques modified: Hansen in the real world. J Cardiovasc Electrophysiol 20(11):1193–1196CrossRefGoogle Scholar
  26. .
    Younes HK, Davies MG, Bismuth J, Naoum JJ, Peden EK, Reardon MJ, Lumsden AB (2010) Hybrid thoracic endovascular aortic repair: Pushing the envelope. J Vasc Surg 51(1):259–266CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Cardiovascular Surgery, Methodist DeBakey Heart and Vascular CenterThe Methodist HospitalHoustonUSA

Personalised recommendations