Advertisement

Spectra of Regular and Noise Signals

  • Alexander A. Ignatiev
  • Alexander V. Lyashenko
Chapter

Abstract

Heteromagnetic microelectronics or the magnetoelectronics of active microsystems investigates multifunction interactions in FSS, devices, MC, VLSIC, containing one or several FMCR in their saturated (single-domain) or unsaturated (multi-domain) states in the interelectrode gaps of a transistor or diode, or in the gaps between the main electrodes (which are energized) and additional electrodes [23].

Keywords

Spectral Line Power Level Spectral Component Bias Field High Power Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ignatiev, A.A., Magnetoelectronics of microwave and extremely high frequencies in ferrite films, Springer, NY, 2009, p. 333.CrossRefGoogle Scholar
  2. 17.
    Gurevich A.G., Magnetic resonance in ferrites and antiferromagnetics, Nauka, Moscow, 1973.Google Scholar
  3. 18.
    Gurevich A.G., Melkov A.G. Magnetic oscillations and waves, Nauka, Moscow, 1994.Google Scholar
  4. 19.
    Yakovlev Yu. M., Gendelev S. Sh., Ferrite monocrystals in radio electronics, Soviet Radio, Moscow, 1975.Google Scholar
  5. 20.
    Topical collection of reports and articles of the scientific and technical meeting “Heteromagnetic microelectronics”, Vol. 1: Multipurpose complexification devices and systems of microwave and EHF ranges, Ed. Ignatiev A.A., Saratov, Publishing house of Saratov State University, 2004.Google Scholar
  6. 21.
    Topical collection of reports and articles of the II and III scientific and technical meetings 2004 “Heteromagnetic microelectronics”, Vol. 2: Methods of designing of magnetoelectronic devices, Ed. Ignatiev A.A., Saratov, Publishing house of Saratov State University, 2005.Google Scholar
  7. 23.
    RF Patent No 2280917, application No 2005117825/28 (02081) of Ignatiev A.A., Lyashenko A.V. “A multifunctional integral magneto-semiconductor device”, H01L27/14, priority of 09.06.2005, issued 27.07.06, Bul. No. 21.Google Scholar
  8. 24.
    USA Patent No 5, 313, 082. C1 HO1L 27/085 Feb. 16, 1993.Google Scholar
  9. 25.
    USA Patent No 5, 200, 713. C1 HO3B 5/18 May. 18, 1992.Google Scholar
  10. 26.
    Kalinin V.I., Zalogin N.M., Myasin E.A., Transition to chaos in a parametrical system with a nonlinear ferrite microresonator, Letters to ZTF (Russ.), 1984, Vol. 76 (21), p. 1311.Google Scholar
  11. 27.
    USA Patent No 5, 130, 670. C1 HO3L 7/07 Aug. 1, 1991.Google Scholar
  12. 28.
    USA Patent No 5, 146, 186. C1 HO3L 7/07 May. 13, 1991.Google Scholar
  13. 29.
    Bezborodov Yu. M., et al., Multipurpose generating microwave devices with dielectric resonators: A review on electronics, Ser.1 “Microwave electronics”, 1983, Vol. 21.Google Scholar
  14. 30.
    Petrov T.V., et al., Low-noise autogenerators on field transistors with Schottky’s barrier, Foreign Electron., 1983 (3), p. 24.Google Scholar
  15. 31.
    RU Patent No 2012102, C1 HO1L 29/812, 30.04.94, Bul. 8.Google Scholar
  16. 32.
    RU Patent No 2212090, C1 HO3B 5/18, 7/14, 25.04.95, Bul. 10.Google Scholar
  17. 33.
    Vikulin I.V., Glauberman M.A., et al., A magnetic-field sensor on the basis of a two-collector magnetotransistor, Appl. Tech. Electron., 1974 (5), p. 45.Google Scholar
  18. 34.
    RU Patent No 2055419, C1 6HO1L 29/82, 27.02.96, Bul. 6.Google Scholar
  19. 35.
    RU Patent No 2008748, C1 5HO1L 29/82, 28.02.94, Bul. 4.Google Scholar
  20. 36.
    RU Patent No 2097873, C1 6HO1L 29/82, 27.11.97. Bul. 33.Google Scholar
  21. 37.
    Bogdanov G.B., Basics of the theory and applications of ferrites in measurements and control, Soviet Radio, Moscow, 1967.Google Scholar
  22. 38.
    Lax B, Button K., Microwave ferrites and ferrimagnetics, McGraw-Hill Book Company, Inc. New York, San Francisco, Toronto, London, 1962.Google Scholar
  23. 39.
    Gummel H.K., Poon H.C., An integral charge control model of bipolar transistors, Bell Syst. Tech. J., May–June 1970, Vol. 49, p. 827–852.Google Scholar
  24. 40.
    Poon H.C., Modeling of bipolar transistor using charge control model with application to third-order distortion studies, IEEE Trans. Electron. Devices, 1972, Vol. ED-12 (6), p. 719.CrossRefGoogle Scholar
  25. 41.
    Gummel H.K., A charge control relation bipolar transistor, Bell Syst. Tech. J., 1970, Vol. 49 (1), p. 115.Google Scholar
  26. 44.
    Veselov G.I., Yegorov E.I., Alekhin Yu. I., et al., Microelectronic microwave devices, Moscow, 1988.Google Scholar
  27. 52.
    Anishchenko V.S., Stochastic oscillations in radiophysical systems, Saratov State University, Saratov, 1986.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alexander A. Ignatiev
    • 1
  • Alexander V. Lyashenko
    • 2
  1. 1.Department of PhysicsSaratov State UniversitySaratovRussia
  2. 2.Open Society “Tantal”SaratovRussia

Personalised recommendations