Advertisement

Microbial Biosurfactants and Biodegradation

  • Owen P. Ward
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 672)

Abstract

Microbial biosurfactants are amphipathic molecules having typical molecular weights of 500–1500 Da, made up of peptides, saccharides or lipids or their combinations. In biodegradation processes they mediate solubilisation, mobilization and/or accession of hydrophobic substrates to microbes. They may be located on the cell surface or be secreted into the extracellular medium and they facilitate uptake of hydrophobic molecules through direct cellular contact with hydrophobic solids or droplets or through micellarisation. They are also involved in cell physiological processes such as biofilm formation and detachment, and in diverse biofilm associated processes such as wastewater treatment and microbial pathogenesis. The protection of contaminants in biosurfactants micelles may also inhibit uptake of contaminants by microbes. In bioremediation processes biosurfactants may facilitate release of contaminants from soil, but soils also tend to bind surfactants strongly which makes their role in contaminant desorption more complex. A greater understanding of the underlying roles played by biosurfactants in microbial physiology and in biodegradative processes is developing through advances in cell and molecular biology.

Keywords

Biosurfactant Production Cell Surface Hydrophobicity Reductive Dechlorination Oily Sludge Chemical Surfactant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    VanHamme JD, Singh A, Ward OP. Surfactants in microbiology and biotechnology: Part 1. Physiological Aspects Biotechnol Adv 2006; 24:604–620.Google Scholar
  2. 2.
    Gutnick DL and Shabtai Y. Exopolysaccharide bioemulsifiers. In: Kosaric N, Cairns WL, Gray NCC, eds. Biosurfactants and Biotechnology. New York: Dekker, 1987:211–246.Google Scholar
  3. 3.
    Lin SC. Biosurfactants: recent advances. J Chem Technol Biotechnol 1996; 66:109–120.CrossRefGoogle Scholar
  4. 4.
    Sekelsy AM, Shreve GS. Kinetic model of biosurfactant-enhanced hexadecane biodegradation by pseudomonad aeruginosa. Biotechnol Bioeng 1999; 63:401–409.CrossRefGoogle Scholar
  5. 5.
    VanHamme JD, Ward OP. Physical and metabolic interactions of pseudomonas sp. strain-B45 and rhodococcus sp. F9-D79 during growth on crude oil and the effect of chemical surfactants thereon. Appl Environ Microbiol 2001; 67:4874–4879.CrossRefGoogle Scholar
  6. 6.
    Noordman WH, Janssen DB. Rhamnolipid stimulates uptake of hydrophobic compounds by pseudomonas aeruginosa. Appl Environ Microbiol 2002; 68:4502–4508.CrossRefPubMedGoogle Scholar
  7. 7.
    Bouchez-Naietali M, Rakatozafy H, Marchal R et al. Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 1999; 86:421–428.CrossRefGoogle Scholar
  8. 8.
    Beal R, Betts W. Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in pseudomonas aeruginosa. J Appl Microbiol 2000; 89:158–168.CrossRefPubMedGoogle Scholar
  9. 9.
    Prabhu Y, Phale PS. Biodegradation of phenanthrene by pseudomonas sp. strain PP2: Novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol 2003; 61:342–351.PubMedGoogle Scholar
  10. 10.
    Kumar M, Leon V, De Sisto Materano A et al. Enhancement of oil degradation by coculture of hydrocarbon degrading and biosurfactant producing bacteria. Pol J Microbiol 2006; 55:139–146.PubMedGoogle Scholar
  11. 11.
    Burd G, Ward OP. Bacterial degradation of polycyclic aromatic hydrocarbons on agar plates: the role of biosurfactants. Biotech Techs 1996; 10:371–374.Google Scholar
  12. 12.
    Burd G, Ward OP. Involvement of a surface active high-molecular weight factor in degradation of polycyclic aromatic hydrocarbons. Can J Microbiol 1996; 42:791–797.CrossRefPubMedGoogle Scholar
  13. 13.
    Burd G, Ward OP. Physicochemical properties of PM-factor, a surface-active agent produced by pseudomonas marginalis. Can J Microbiol 1996; 42:243–251.CrossRefPubMedGoogle Scholar
  14. 14.
    Burd G, Ward OP. Energy-dependent production of particulate biosurfactant by p. marginalis. Can J Microbiol 1997; 43:391–394.CrossRefGoogle Scholar
  15. 15.
    Singh A, VanHamme JD, Ward OP. Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 2007; 25:99–121.CrossRefPubMedGoogle Scholar
  16. 16.
    Manning FC, Thompson, RE. Oilfield Processing. Crude Oil Tulsa: Penwell 1995; 2:1–434.Google Scholar
  17. 17.
    Das M. Characterization of de-emulsification capabilities of a micrococcus sp. Bioresource Technol 2001; 79:15–22.CrossRefGoogle Scholar
  18. 18.
    Ward OP, Singh A. Biological process for breaking oil-water emulsions. United States Patent 2001; (6)171:500 B1.Google Scholar
  19. 19.
    Makkar RS, Rockne KJ. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 2003; 22:2280–2292.CrossRefPubMedGoogle Scholar
  20. 20.
    Foght JM, Gutnick DL, Westlake DWS. Effect of emulsan on biodegradation of crude oil by pure and mixed bacterial cultures. Appl Environ Microbiol 1989; 55:36–42.PubMedGoogle Scholar
  21. 21.
    Shin KH, Kim KW, Seagren EA. Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene. Appl Microbiol Biotechnol 2004; 65:336–343.CrossRefPubMedGoogle Scholar
  22. 22.
    Shin KH, Ahn Y, Kim KW. Toxic effect of biosurfactant addition on the biodegradation of phenanthrene. Environ Toxicol Chem 2005; 24:2768–2774.CrossRefPubMedGoogle Scholar
  23. 23.
    Chang JS, Radosevich M, Jin Y et al. Enhancement of phenanthrene solubilization and biodegradation by trehalose lipid biosurfactants. Environ Toxicol Chem 2004; 23:2816–2822.CrossRefPubMedGoogle Scholar
  24. 24.
    Billingsley KA, Backus SM, Ward OP. Effects of surfactants on aqueous solubilization of PCB congeners and on their biodegradation by Pseudomonas strain LB400. Appl Microbiol Biotechnol 1999; 52:255–260.CrossRefPubMedGoogle Scholar
  25. 25.
    Moran AC, Olivera N, Commendatore M et al. Enhancement of hydrocarbon waste biodegradation by addition of a biosurfactant from Bacillus subtilis O9. Biodegradation 2000; 11:65–71.CrossRefPubMedGoogle Scholar
  26. 26.
    VanHamme JD, Ward OP. Influence of chemical surfactants on the biodegradation of crude oil by a mixed bacterial culture. Can J Microbiol 1999; 45:130–137.CrossRefGoogle Scholar
  27. 27.
    Mackay D. Multimedia environmental models: the fugacity approach. Boca Raton: Lewis CRC 2001.CrossRefGoogle Scholar
  28. 28.
    Harms H, Bosma TNP. Mass transfer limitation of microbial growth and pollutant degradation. J Indust Microbiol Biotechnol 1997; 18:97–105.CrossRefGoogle Scholar
  29. 29.
    Crawford RL, Hess TF, Paszczynski A. Combined biological and abiological degradation of xenobiotic compounds. In: Singh A, Ward OP, eds. Soil Biology, Biodegradation and Bioremediation. Berlin: Springer-Verlag 2004; 2:251–278.Google Scholar
  30. 30.
    Haderlein SB, Schwartzenbach RP. Adsorbtion of substituted nitrobenzenes and nitrophenols to mineral surfaces. Environ Sci Technol 1993; 37:316–326.CrossRefGoogle Scholar
  31. 31.
    Billingsley KA, Backus SM, Wilson S et al. Remediation of PCBs in soil by surfactant washing and biodegradation in the wash by Pseudomonas sp. LB400. Biotechnol Letts 2002; 24:1827–1832.CrossRefGoogle Scholar
  32. 32.
    Ochoa-Loza FJ, Noordman WH, Jannsen DB et al. Effect of clays, metal oxides and organic matter on rhamnolipid biosurfactant sorption by soil. Chemosphere 2007; 66:1634–1642.CrossRefPubMedGoogle Scholar
  33. 33.
    Robinson KG, Ghosh MM, Shi Z. Mineralization enhancement of non-aqueous phase and soil-bound PCB using biosurfactant. Water Sci Technol 1995; 34:303–309.Google Scholar
  34. 34.
    Royal CL, Preston DR, Sekelsky AM et al. Reductive dechlorination of polychlorinated biphenyls in landfill leachate. Internat Biodeter Biodeg 2003; 51:61–66.CrossRefGoogle Scholar
  35. 35.
    Hua Z, Chen J, Lun S et al. Influence of biosurfactants produced by candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Res 2003; 37:4143–4150.CrossRefPubMedGoogle Scholar
  36. 36.
    Ward OP, Singh A, Billingsley KA. Treatment of soil contaminated with hazardous residues. United States Patent 2001; (6)251:058 B1.Google Scholar
  37. 37.
    Bregnard TP-A, Hoehener P, Zeyer J. Bioavailability and biodegradation of weathered diesel fuel in aquifer material under denitrifying conditions. Environ Toxicol Chem 1998; 17:1222–1229.CrossRefGoogle Scholar
  38. 38.
    Maslin P, Maier RM. Rhamnolipid-enhanced mineralization of phenanthrene in organic-metal cocontaminated soils. Bioremediation J 2000; 4:295–308.CrossRefGoogle Scholar
  39. 39.
    Rocha C, Infante C. Enhanced oily sludge biodegradation by a tensio-active agent isolated from pseudomonas aeruginosa USB-CS1. Appl Microbiol Biotechnol 1997; 47:615–619.CrossRefGoogle Scholar
  40. 40.
    Kassab DM, Roane TM. Differential responses of a mine tailings pseudomonas isolate to cadmium and lead exposures. Biodegradation 2006; 17:379–387.CrossRefPubMedGoogle Scholar
  41. 41.
    Husain DR, Goutx M, Bezac C et al. Morphological adaptation of pseudomonas nautica strain 617 to growth on eicosane and modes of eicosane uptake. Letts Appl Microbiol 1997; 24:55–58.CrossRefGoogle Scholar
  42. 42.
    Zhang Y, Miller RM. Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl Environ Microbiol 1995; 61:2247–2251.PubMedGoogle Scholar
  43. 43.
    Martins dos Santos VAP, Yakimov, MM, Timmins KN et al. Genomic insights into oil biodegradation in marine systems. In Diaz E, ed. Microbial Biodegradation: Genomics and Molecular Biology Caister Academic Press 2008; Chapter 9.Google Scholar
  44. 44.
    Godvind R, Narayan S. Selection of bioreactor media for odor control. In: Shareefdeen Z, Singh A, eds. Biotechnology for Odor and Air Pollution Control. Berlin: Springer 2005:65–100.CrossRefGoogle Scholar
  45. 45.
    Data I Allen DG. Biofilter Technology. In: Shareefdeen Z, Singh A, eds. Biotechnology for Odor and Air Pollution Control. Berlin: Springer, 2005:126–145.Google Scholar
  46. 46.
    Singh A, Ward OP. In: Shareefdeen Z, Singh A, eds. Biotechnology for Odor and Air Pollution Control Berlin: Springer 2005:101–121.CrossRefGoogle Scholar
  47. 47.
    Ward OP, Moo-Young M. Critical reviews in biotechnology.Google Scholar
  48. 48.
    Ward OP, Rao MB, Kulkarni A. Proteases. In: Schaechter M ed. Encyclopedia of Microbiology, 3rd Ed. Oxford: Elsevier, 2009.Google Scholar
  49. 49.
    Rogers AH. Molecular oral microbiology. Norwich, UK. Caiser Academic Press 2008; 1–292.Google Scholar
  50. 50.
    Allison D. Community structure and co-operation in biofilms. Cambridge: Cambridge University Press 2000CrossRefGoogle Scholar
  51. 51.
    Allison DG. The biofilm matrix. Biofouling 2003; 19:139–150.CrossRefPubMedGoogle Scholar
  52. 52.
    Stewart P, Costerton J. Antibiotic resistance of bacteria in biofilms. Lancet 2001; 358:135–138.CrossRefPubMedGoogle Scholar
  53. 53.
    Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother 2001; 45:999–1007.CrossRefPubMedGoogle Scholar
  54. 54.
    Klausen M, Heydorn A, Ragas P et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Molec Microbiol 2003; 48:1511–1524.CrossRefGoogle Scholar
  55. 55.
    Stoodley P, DeBeer D, Lewandowski Z. Liquid flow in biofilm systems. Appl Environ Microbiol 1994; 60:2711–2716.PubMedGoogle Scholar
  56. 56.
    Deziel E, Lepine F, Dennie D et al. Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1999; 1440:244–252.PubMedGoogle Scholar
  57. 57.
    Ochsner UA, Fiechter A, Reiser J. Isolation, characterization and expression in escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 1994; 269:19787–19795.PubMedGoogle Scholar
  58. 58.
    Rahim R, Ochsner UA, Olvera C et al. Cloning and functional characterization of the pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Molec Microbiol 2001; 40:708–718.CrossRefGoogle Scholar
  59. 59.
    Lequette Y, Greenberg EP. Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol 2005; 187:37–44.CrossRefPubMedGoogle Scholar
  60. 60.
    Pamp SJ, Tolker-Nielsen T. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 2007; 189:2531–2539.CrossRefPubMedGoogle Scholar
  61. 61.
    Boles BR, Thoendel M, Singh PK. Rhamnolipids mediate detachment of pseudomonas aeruginosa from biofilms. Molec Microbiol 2005; 57:1210–1223.CrossRefGoogle Scholar
  62. 62.
    Dubern J-F, Lagendijk EL, Lugtenberg BJJ et al. The Heat Shock Genes dnaK, dnaJ and grpE Are Involved in Regulation of Putisolvin Biosynthesis in Pseudomonas putida PCL1445. J Bacteriol 2005; 187:5967–5976.CrossRefPubMedGoogle Scholar
  63. 63.
    Kuiper I, Lagendijk EL, Pickford R et al. Characterization of two pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Molec Microbiol 2004; 51:97–113.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Department of BiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations