Abstract
Biosurfactant or microbial surfactants produced by microbes are structurally diverse and heterogeneous groups of surface-active amphipathic molecules. They are capable of reducing surface and interfacial tension and have a wide range of industrial and environmental applications. The present chapter reviews the biochemical properties of different classes of microbial surfactants and their potential application in different industrial sectors.
Keywords
- Bacillus Subtilis
- Cyclic Lipopeptide
- Microbial Surfactant
- Mannosylerythritol Lipid
- Trehalose Lipid
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Cooper DG. Biosurfactants. Microbiol Sci 1986; 3:145–149.
Banat IM. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review. Bioresource Technol 1995; 51:1–12.
Mukherjee S, Das P, Sen R. Towards commercial production of microbial surfactants. Trends in Biotechnology 2006; 24:509–515.
Lang S, Wagner F. Structure and properties of biosurfactants. In: Kosaric N, Cairns WL, Gray NCC, eds. Biosurfactants and Biotechnology. New York: Marcel Dekker, Inc, 1987:21–47.
Maier RM. Biosurfactant: Evolution and diversity in bacteria. Adv Appl Microbiol 2003; 52:101–121.
Nakata K. Two glycolipids increase in the bioremediation of halogenated aromatic compounds. J Biosci Bioeng 2000; 89:577–581.
Kim HS, Lim EJ, Lee SO et al. Purification and characterization of biosurfactants from nocardia sp. L-417. Biotechnol Appl Biochem 2000; 31:249–253.
Van Hoogmoed CG, van der Kuijl-Booij M, van der Mei HC et al. Inhibition of streptococcus mutans NS adhesion to glass with and without a salivary conditioning film by biosurfactant-releasing streptococcus mitis strains. Appl Environ Microbiol 2000; 66:659–663.
Golyshin PM, Fredrickson HL, Giuliano L et al. Effect of novel biosurfactants on biodegradation of polychlorinated biphenyls by pure and mixed bacterial cultures. Microbiologica 1999; 22:257–267.
Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Bio Rev 1997; 61:47–64.
Cooper DG, Liss SN, Longay R et al. Surface activities of mycobacterium and pseudomonas. J Ferment Technol 1989; 59:97–101.
Philp JC, Kuyukina MS, Ivshina IB et al. Alkanotripic rhodococcus ruber as a biosurfactant producer. Appl Microbiol Biotechnol 2002; 59:318–324.
Benincasa M, Abalos A, Oliveria I et al. Chemical structure, surface properties and biological activities of the biosurfactant produced by pseudomonas aeruginosa LBI from soapstock. Antonie van Leeuwenhoek 2004; 85:1–8.
Nitschke M, Costa SG, Contiero J. Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 2005; 21:1593–1600.
Pornsunthorntawee O, Wongpanit P, Chavadej S et al. Structural and physicochemical characterization of crude biosurfactant produced by pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour Technol 2008; 99:1589–1595.
Monteiro SA, Sassaki GL, de Souza LM et al. Molecular and structural characterization of the biosurfactant produced by pseudomonas aeruginosa DAUPE 614. Chem Phys Lipids 2007; 147:1–13.
Edward JR, Hayashi JA. Structure of a rhamnolipid from pseudomonas aeruginosa. Arch Biochem Biophys 1965; 111:415–421.
Itoh S, Honda H, Tomita F et al. Rhamnolipids produced by pseudomonas aeruginosa grown on n-paraffin. J Antibiot 1971; 24:855–859.
Tullock P, Hill A, Spencer JFT. A new type of marocyclic lactone from torulopsis apicola. J Chem Soc Chem Commun 1967; 584–586.
Chen J, Song X, Zhang H et al. Production, structure elucidation and anticancer properties of sophorolipid from wickerhamiella domercqiae. Enzyme Microb Technol 2006; 39:501–506.
Van Bogaert IN, Saerens K, De Muynck C et al. Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 2007; 76:23–34.
Rau U, Hammen S, Heckmann R et al. Sophorolipids: a source for novel compounds. Ind Crops Prod 2001; 13:85–92.
Schippers C, Gessner K, Müller T et al. Microbial degradation of phenanthrene by addition of a sophorolipid mixture. J Biotechnol 2000; 83:189–198.
Crich D, de la Mora MA, Cruz R. Synthesis of the mannosyl erythritol lipid MEL A; confirmation of the configuration of the meso-erythritol moiety. Tetrahedron 2002; 58:35–44.
Kitamoto D, Yanagishita H, Shinbo T et al. Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by candida antarctica. J Biotechnol 1993; 29:91–96.
Kim HS, Yoon BD, Choung DH et al. Characterization of a biosurfactant, mannosylerythritol lipid produced from candida sp. SY16. Appl Microbiol Biotechnol 1999; 52:713–721.
Fukuoka T, Morita T, Konishi M et al. Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by pseudozyma yeasts. Biotechnol Lett 2007; 29:1111–1118.
Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptide lipid surfactant produced by bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 1968; 31:488–494.
Peypoux F, Bonmatin JM, Wallach J. Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 1999; 51:553–563.
Mukherjee AK, Das K. Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by bacillus subtilis strains in a particular habitat. FEMS Microbiol Eco 2005; 54:479–489.
Sen R, Swaminathan T. Characterization of concentration and purification parameters and operating conditions for the small-scale recovery of surfactin. Process Biochem 2005; 40:2953–2958.
Vater J, Kablitz B, Wilde C et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 2002; 68:6210–6219.
Rodrigues LR, Banat IM, Teixeria JA et al. Biosurfactants: Potential applications in medicine. J Antimicrob Chemother 2006; 57:609–618.
Peypoux F, Besson F, Michel G et al. Structure de l’iturine C de bacillus subtilis. Tetrahedron 1978; 38:1147–1152.
Kajimura Y, Sugiyama M, Kaneda M. Bacillopeptins, new cyclic lipopeptide antibiotics from bacillus subtilis FR-2. J Antibiot (Tokyo) 1995; 48:1095–1103.
Romero D, de Vicente A, Olmos JL et al. Effect of lipopeptides of antagonistic strains of bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen podosphaera fusca. J Appl Microbiol 2007; 103:969–976.
Mizumoto S, Hirai M, Shoda M. Enhanced iturin a production by bacillus subtilis and its effect on suppression of the plant pathogen rhizoctonia solani. Appl Microbiol Biotechnol 2007; 75:1267–1274.
Schneider J, Taraz K, Budzikiewicz H et al. The structure of two fengycins from bacillus subtilis S499. Z Naturforsch 1999; 54:859–865.
Wang J, Liu J, Wang X et al. Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by bacillus subtilis. Lett Appl Microbiol 2004; 39:98–102.
McInerney MJ, Javaheri M, Nagle DP. Properties of the biosurfactant produced by bacillus licheniformis strain JF-2. J Ind Microbiol 1990; 5:95–102.
Yakimov MM, Fredrickson HL, Timmis KN. Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from bacillus licheniformis BAS50. Biotechnol Appl Biochem 1996; 23:13–18.
Horowitz S, Currie JK. Novel dispersants of silicon carbide and aluminium nitrate. J Dispersion Sci Technol 1990; 11:637–659.
Grangemard I, Wallach J, Maget-Dana R et al. Lichenysin: a more efficient cation chelator than surfactin. Appl Biochem Biotechnol 2001; 90:199–210.
MacDonald CR, Cooper DG, Zajic JE. Surface-active lipids from nocardia erythropolis grown on hydrocarbons. Appl Environ Microbiol 1981; 41:117–123.
Kretschmer A, Bock H, Wagner F. Chemical and physical characterization of interfacial-active lipids from rhodococcus erthropolis grown on n-alkane. Appl Environ Microbiol 1982; 44:864–870.
Wayman M, Jenkins AD, Kormady AG. Biotechnology for oil and fat industry. J Am Oil Chem Soc 1984; 61:129–131.
Robert M, Mercade ME, Bosch MP et al. Effect of the carbon source on biosurfactant production by pseudomonas aeruginosa 44T. Biotechnol Lett 1989; 11:871–874.
Rosenberg E, Zuckerberg A, Rubinovitz C et al. Emulsifier arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol 1979; 37:402–408.
Zukerberg A, Diver A, Peeri Z et al. Emulsifier of arthrobacter RAG-1: chemical and physical properties. Appl Environ Microbiol 1979; 37:414–420.
Bach H, Berdichevsky Y, Gutnick D. An exocellular protein from the oil-degrading microbe acinetobacter venetianus RAG-1 enhances the emulsifying activity of the polymeric bioemulsifier emulsan. Appl Environ Microbiol 2003; 69:2608–2615.
Rosenberg E, Rubinovitz C, Legmann R et al. Purification and chemical properties of acinetobacter calcoaceticus A2 biodispersan. Appl Environ Microbiol 1988; 54:323–326.
Elkeles A, Rosenberg E, Ron EZ. Production and secretion of the polysaccharide biodispersan of acinetobacter calcoaceticus A2 in protein secretion mutants. Appl Environ Microbiol 1994; 60:4642–4645.
Navonvenezia S, Zosim Z, Gottieb A et al. Alasan, a new bioemulsifier from acinetobacter radioresistens. Appl Environ Microbiol 1995; 61:3240–3244.
Barkay T, Navon-Venezia S, Ron EZ et al. Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 1999; 65:2697–2702.
Toren A, Segal G, Ron EZ et al. Structure-function studies of the recombinant protein bioemulsifier AlnA. Environ Microbiol 2002; 4:257–261.
Toren A, Navon-Venezia S, Ron EZ et al. Emulsifying activities of purified alasan proteins from acinetobacter radioresistens KA53. Appl Environ Microbiol 2001; 67:1102–1106.
Cirigliano MC, Carman GM. Isolation of a bioemulsifier from candida lipolytica. Appl Environ Microbiol 1984; 48:747–750.
Cameron DR, Cooper DG, Neufeld RJ. The mannoprotein of saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol 1988; 54:1420–1425.
Kappeli O, Walther P, Muller M et al. Structure of cell surface of the yeast candida tropicalis and its relation to hydrocarbon transport. Arch Microbiol 1984; 138:279–282.
Koronelli TV, Komarova TI, Denisov YV. Chemical composition and role of peptidoglycolipid of pseudomonas aeruginosa. Mikrobiologiya 1983; 52:767–770.
Desai AJ, Patel KM, Desai JD. Emulsifier production by pseudomonas fluorescence during the growth on hydrocarbon. Curr Sci 1988; 57:500–501.
Kappeli O, Finnerty WR. Partition of alkane by an extracellular vesicle derived from hexadecane-grown acinetobacter. J Bacteriol 1979; 140:707–712.
Nitschke M, Costa SGVAO. Biosurfactants in food industry. Trends Food Sci Technol 2007; 18:252–259.
Singh A, Van Hamme JD, Ward OP. Surfactants in microbiology and biotechnology: part2. Application aspects. Biotechnol Adv 2007; 25:99–121.
Makkar R, Cameotra SS. An update on the use of unconventional substrates for biosurfactant production and their application. Appl Microbiol Biotechnol 2002; 58:428–434.
Van Hamme JD, Singh A, Ward OP. Physiological aspect. Part1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 2006; 24:604–620.
Das K, Mukherjee AK. Characterization of biochemical properties and biological activities of biosurfactants produced by pseudomonas aeruginosa mucoid and nonmucoid strains. Appl Microbiol Biotechnol 2005; 69:192–199.
Das K, Mukherjee AK. Assessment of mosquito larvicidal potency of cyclic lipopeptides produced by bacillus subtilis strains. Acta Tropica 2006; 97:168–173.
Mukherjee AK. Potential application of cyclic lipopeptide biosurfactants produced by bacillus subtilis strains in laundry detergent formulations. Lett Appl Microbiol 2007; 45:330–335.
Das K, Mukherjee AK. Differential utilization of pyrene as the sole source of carbon by bacillus subtilis and pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability. J Appl Microbiol 2007; 102:195–203.
Das K, Mukherjee AK. Crude petroleum-oil biodegradation efficiency of bacillus subtilis and pseudomonas aeruginosa strains isolated from petroleum oil contaminated soil from north-east india. Bioresource Technol 2007; 98:1339–1345.
Mulligan CN. Environmental applications of biosurfactants. Environ Pollution 2005; 133:183–198.
Hunt PG, Robinson KG, Ghosh MM. The role of biosurfactants in biotic degradation of hydrophobic organic compounds. In: Hinchee RE, Alleman BC, Hoeppel RE et al, eds. Hydrocarbon Bioremediation. Boca Raton: Lewis Publishers, 1994:318–322.
Noordman WH, Janssen DB. Rhamnolipid stimulates uptake of hydrophobic compounds by pseudomonas aeruginosa. Appl Environ Microbiol 2002; 68:4502–4508.
Banat IM, Samarah N, Murad M et al. Biosurfactant production and use in oil tank clean-up. World J Microbiol Biotechnol 1991; 7:80–88.
Lillienberg L, Hogstedt B, Nilson L. Health-effects of tank cleaners. Amer Ind Hygiene Assoc J 1992; 53:95–102.
Singer ME, Vogt Finnerty WR. Microbial metabolism of straight and branched alkanes. In: Atlas R, ed. Petroleum Microbiology. New York: Collier Mac Millan, 1984:1–59.
Van Dyke MI, Lee H, Trevors JT. Applications of microbial surfactants. Biotech Adv 1991; 9:241–252.
Morkes J. Oil-spills-whose technology will clean up. R and D Mazagine 1993; 35:54–56.
Bubela B. A comparison of strategies for enhanced oil recovery using in situ and ex situ produced biosurfactants. Surfactant Science Series 1987; 25:143–161.
Abu-Ruwaida AS, Banat IM, Haditirto S et al. Isolation of biosurfactant-producing bacteria-product characterization and evaluation. Acta Biotechnologica 1991; 11:315–324.
Banat IM. The isolation of a thermophilic biosurfactant producing bacillus sp. Biotech Lett 1993; 15:591–594.
Das K, Mukherjee AK. Comparison of lipopeptide biosurfactants production by bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial application of biosurfactants. Process Biochem 2007; 42:1191–1199.
Tanner RS, Udegbunam EO, McInerney MJ et al. Microbially enhanced oil recovery from carbonate reservoirs. Geomicrobiol J 1991; 9:169–195.
Hitzman DO. Petroleum microbiology and the history of its role in enhanced oil recovery. In: Donaldson EC, Clark JB, eds. Proc 1982. International Conf: Microbial enhancement of oil recovery. Springfield: NTIS, 1983:163–218.
Youssef N, Simpson DR, Duncan KE et al. In situ biosurfactant production by bacillus strains injected into a limestone petroleum reservoir. Environ Microbiol 2007; 73:1239–1247.
Kachholz T, Schlingmann M. Possible food and agricultural application of microbial surfactants: an assessment. In: Kosaric N, Cairns WL, Grey NCC, eds. Biosurfactant and Biotechnology, Vol 25. New York: Marcel Dekker Inc, 1987:183–208.
Vater PJ. Lipopeptides in food application. In: Kosaric N, ed. Biosurfactant—Production, Properties and Applications. New York: Marcel Dekker Inc, 1986:419–446.
Van Haesendonck IPH, Vanzeveren ECA. Rhamnolipids in bakery products. W.O. 2004/040984, International application patent (PCT), 2004.
Iyer A, Mody K, Jha B. Emulsifying properties of a marine bacterial exopolysaccharide. Enzyme Microbial Technol 2006; 38:220–222.
Ashwati N, Kumar A, Makkar RS et al. Biodegradation of soil-applied endosulfan in the presence of a biosurfactant. J. Environ Sci Health B 1999; 34:793–803.
Kulkarni M, Chaudhari R, Chaudhari A. Novel tensio-active microbial compounds for biocontrol applications. In: Ciancio A, Mukerji KG, eds. General Concepts in Integrated Pest and Disease Management. Springer Netherlands 2007:295–304.
Ongena M, Jacques P, Touré Y et al. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of bacillus subtilis. Appl Microbiol Biotechnol 2005; 69:29–38.
Ramarathnam R, Bo S, Chen Y et al. Molecular and biochemical detection of fengycin-and bacillomycin D-producing bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 2007; 53:901–911.
Assie LK, Deleu M, Arnaud L et al. Insecticide activity of surfactins and iturins from a biopesticide bacillus subtilis cohn (S499 strain). Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 2002; 67:647–655.
Vollenbroich D, Özel M, Vater J et al. Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from bacillus subtilis. Biologicals 1997; 25:289–297.
Yakimov MM, Timmis KN, Wray V et al. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface bacillus licheniformis BAS 50. Appl Environ Microbiol 1995; 61:1706–1713.
Wang X, Gong L, Liang S et al. Algicidal activity of rhamnolipid biosurfactants produced by pseudomonas aeruginosa. Harmful Algae 2005; 4:433–443.
Thimon L, Peypoux F, Wallach J et al. Effect of the lipopeptide antibiotic iturin A, on morphology and membrane ultrastructure of yeast cells. FEMS Microbiol Lett 1995; 128:101–106.
Itokawa H, Miyashita T, Morita H et al. Structural and conformational studies of [Ile7] and [Leu7] surfactins from bacillus subtilis. Chem Pharm Bul 1994; 42:604–607.
Takizawa M, Hida T, Horiguchi T et al. Tan-1511 A, B and C, microbial lipopeptides with G-CSF and GM-CSF inducing activity. J Antibiot 1995; 48:579–588.
Inoh Y, Kitamoto D, Hirashima N et al. Biosurfactant MEL-A dramatically increases gene transfection via membrane fusion. J Control Release 2004; 94:423–431.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Landes Bioscience and Springer Science+Business Media
About this chapter
Cite this chapter
Mukherjee, A.K., Das, K. (2010). Microbial Surfactants and Their Potential Applications: An Overview. In: Sen, R. (eds) Biosurfactants. Advances in Experimental Medicine and Biology, vol 672. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5979-9_4
Download citation
DOI: https://doi.org/10.1007/978-1-4419-5979-9_4
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-5978-2
Online ISBN: 978-1-4419-5979-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)