Microbial Surfactants and Their Potential Applications: An Overview

  • Ashis K. Mukherjee
  • Kishore Das
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 672)


Biosurfactant or microbial surfactants produced by microbes are structurally diverse and heterogeneous groups of surface-active amphipathic molecules. They are capable of reducing surface and interfacial tension and have a wide range of industrial and environmental applications. The present chapter reviews the biochemical properties of different classes of microbial surfactants and their potential application in different industrial sectors.


Bacillus Subtilis Cyclic Lipopeptide Microbial Surfactant Mannosylerythritol Lipid Trehalose Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooper DG. Biosurfactants. Microbiol Sci 1986; 3:145–149.PubMedGoogle Scholar
  2. 2.
    Banat IM. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review. Bioresource Technol 1995; 51:1–12.CrossRefGoogle Scholar
  3. 3.
    Mukherjee S, Das P, Sen R. Towards commercial production of microbial surfactants. Trends in Biotechnology 2006; 24:509–515.CrossRefPubMedGoogle Scholar
  4. 4.
    Lang S, Wagner F. Structure and properties of biosurfactants. In: Kosaric N, Cairns WL, Gray NCC, eds. Biosurfactants and Biotechnology. New York: Marcel Dekker, Inc, 1987:21–47.Google Scholar
  5. 5.
    Maier RM. Biosurfactant: Evolution and diversity in bacteria. Adv Appl Microbiol 2003; 52:101–121.CrossRefPubMedGoogle Scholar
  6. 6.
    Nakata K. Two glycolipids increase in the bioremediation of halogenated aromatic compounds. J Biosci Bioeng 2000; 89:577–581.CrossRefPubMedGoogle Scholar
  7. 7.
    Kim HS, Lim EJ, Lee SO et al. Purification and characterization of biosurfactants from nocardia sp. L-417. Biotechnol Appl Biochem 2000; 31:249–253.CrossRefPubMedGoogle Scholar
  8. 8.
    Van Hoogmoed CG, van der Kuijl-Booij M, van der Mei HC et al. Inhibition of streptococcus mutans NS adhesion to glass with and without a salivary conditioning film by biosurfactant-releasing streptococcus mitis strains. Appl Environ Microbiol 2000; 66:659–663.CrossRefPubMedGoogle Scholar
  9. 9.
    Golyshin PM, Fredrickson HL, Giuliano L et al. Effect of novel biosurfactants on biodegradation of polychlorinated biphenyls by pure and mixed bacterial cultures. Microbiologica 1999; 22:257–267.PubMedGoogle Scholar
  10. 10.
    Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Bio Rev 1997; 61:47–64.Google Scholar
  11. 11.
    Cooper DG, Liss SN, Longay R et al. Surface activities of mycobacterium and pseudomonas. J Ferment Technol 1989; 59:97–101.Google Scholar
  12. 12.
    Philp JC, Kuyukina MS, Ivshina IB et al. Alkanotripic rhodococcus ruber as a biosurfactant producer. Appl Microbiol Biotechnol 2002; 59:318–324.CrossRefPubMedGoogle Scholar
  13. 13.
    Benincasa M, Abalos A, Oliveria I et al. Chemical structure, surface properties and biological activities of the biosurfactant produced by pseudomonas aeruginosa LBI from soapstock. Antonie van Leeuwenhoek 2004; 85:1–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Nitschke M, Costa SG, Contiero J. Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 2005; 21:1593–1600.CrossRefPubMedGoogle Scholar
  15. 15.
    Pornsunthorntawee O, Wongpanit P, Chavadej S et al. Structural and physicochemical characterization of crude biosurfactant produced by pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour Technol 2008; 99:1589–1595.CrossRefPubMedGoogle Scholar
  16. 16.
    Monteiro SA, Sassaki GL, de Souza LM et al. Molecular and structural characterization of the biosurfactant produced by pseudomonas aeruginosa DAUPE 614. Chem Phys Lipids 2007; 147:1–13.CrossRefPubMedGoogle Scholar
  17. 17.
    Edward JR, Hayashi JA. Structure of a rhamnolipid from pseudomonas aeruginosa. Arch Biochem Biophys 1965; 111:415–421.CrossRefGoogle Scholar
  18. 18.
    Itoh S, Honda H, Tomita F et al. Rhamnolipids produced by pseudomonas aeruginosa grown on n-paraffin. J Antibiot 1971; 24:855–859.Google Scholar
  19. 19.
    Tullock P, Hill A, Spencer JFT. A new type of marocyclic lactone from torulopsis apicola. J Chem Soc Chem Commun 1967; 584–586.Google Scholar
  20. 20.
    Chen J, Song X, Zhang H et al. Production, structure elucidation and anticancer properties of sophorolipid from wickerhamiella domercqiae. Enzyme Microb Technol 2006; 39:501–506.CrossRefGoogle Scholar
  21. 21.
    Van Bogaert IN, Saerens K, De Muynck C et al. Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 2007; 76:23–34.CrossRefPubMedGoogle Scholar
  22. 22.
    Rau U, Hammen S, Heckmann R et al. Sophorolipids: a source for novel compounds. Ind Crops Prod 2001; 13:85–92.CrossRefGoogle Scholar
  23. 23.
    Schippers C, Gessner K, Müller T et al. Microbial degradation of phenanthrene by addition of a sophorolipid mixture. J Biotechnol 2000; 83:189–198.CrossRefPubMedGoogle Scholar
  24. 24.
    Crich D, de la Mora MA, Cruz R. Synthesis of the mannosyl erythritol lipid MEL A; confirmation of the configuration of the meso-erythritol moiety. Tetrahedron 2002; 58:35–44.CrossRefGoogle Scholar
  25. 25.
    Kitamoto D, Yanagishita H, Shinbo T et al. Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by candida antarctica. J Biotechnol 1993; 29:91–96.CrossRefGoogle Scholar
  26. 26.
    Kim HS, Yoon BD, Choung DH et al. Characterization of a biosurfactant, mannosylerythritol lipid produced from candida sp. SY16. Appl Microbiol Biotechnol 1999; 52:713–721.CrossRefPubMedGoogle Scholar
  27. 27.
    Fukuoka T, Morita T, Konishi M et al. Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by pseudozyma yeasts. Biotechnol Lett 2007; 29:1111–1118.CrossRefPubMedGoogle Scholar
  28. 28.
    Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptide lipid surfactant produced by bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 1968; 31:488–494.CrossRefPubMedGoogle Scholar
  29. 29.
    Peypoux F, Bonmatin JM, Wallach J. Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 1999; 51:553–563.CrossRefPubMedGoogle Scholar
  30. 30.
    Mukherjee AK, Das K. Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by bacillus subtilis strains in a particular habitat. FEMS Microbiol Eco 2005; 54:479–489.CrossRefGoogle Scholar
  31. 31.
    Sen R, Swaminathan T. Characterization of concentration and purification parameters and operating conditions for the small-scale recovery of surfactin. Process Biochem 2005; 40:2953–2958.CrossRefGoogle Scholar
  32. 32.
    Vater J, Kablitz B, Wilde C et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 2002; 68:6210–6219.CrossRefPubMedGoogle Scholar
  33. 33.
    Rodrigues LR, Banat IM, Teixeria JA et al. Biosurfactants: Potential applications in medicine. J Antimicrob Chemother 2006; 57:609–618.CrossRefPubMedGoogle Scholar
  34. 34.
    Peypoux F, Besson F, Michel G et al. Structure de l’iturine C de bacillus subtilis. Tetrahedron 1978; 38:1147–1152.CrossRefGoogle Scholar
  35. 35.
    Kajimura Y, Sugiyama M, Kaneda M. Bacillopeptins, new cyclic lipopeptide antibiotics from bacillus subtilis FR-2. J Antibiot (Tokyo) 1995; 48:1095–1103.Google Scholar
  36. 36.
    Romero D, de Vicente A, Olmos JL et al. Effect of lipopeptides of antagonistic strains of bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen podosphaera fusca. J Appl Microbiol 2007; 103:969–976.CrossRefPubMedGoogle Scholar
  37. 37.
    Mizumoto S, Hirai M, Shoda M. Enhanced iturin a production by bacillus subtilis and its effect on suppression of the plant pathogen rhizoctonia solani. Appl Microbiol Biotechnol 2007; 75:1267–1274.CrossRefPubMedGoogle Scholar
  38. 38.
    Schneider J, Taraz K, Budzikiewicz H et al. The structure of two fengycins from bacillus subtilis S499. Z Naturforsch 1999; 54:859–865.Google Scholar
  39. 39.
    Wang J, Liu J, Wang X et al. Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by bacillus subtilis. Lett Appl Microbiol 2004; 39:98–102.CrossRefPubMedGoogle Scholar
  40. 40.
    McInerney MJ, Javaheri M, Nagle DP. Properties of the biosurfactant produced by bacillus licheniformis strain JF-2. J Ind Microbiol 1990; 5:95–102.CrossRefPubMedGoogle Scholar
  41. 41.
    Yakimov MM, Fredrickson HL, Timmis KN. Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from bacillus licheniformis BAS50. Biotechnol Appl Biochem 1996; 23:13–18.PubMedGoogle Scholar
  42. 42.
    Horowitz S, Currie JK. Novel dispersants of silicon carbide and aluminium nitrate. J Dispersion Sci Technol 1990; 11:637–659.CrossRefGoogle Scholar
  43. 43.
    Grangemard I, Wallach J, Maget-Dana R et al. Lichenysin: a more efficient cation chelator than surfactin. Appl Biochem Biotechnol 2001; 90:199–210.CrossRefPubMedGoogle Scholar
  44. 44.
    MacDonald CR, Cooper DG, Zajic JE. Surface-active lipids from nocardia erythropolis grown on hydrocarbons. Appl Environ Microbiol 1981; 41:117–123.PubMedGoogle Scholar
  45. 45.
    Kretschmer A, Bock H, Wagner F. Chemical and physical characterization of interfacial-active lipids from rhodococcus erthropolis grown on n-alkane. Appl Environ Microbiol 1982; 44:864–870.PubMedGoogle Scholar
  46. 46.
    Wayman M, Jenkins AD, Kormady AG. Biotechnology for oil and fat industry. J Am Oil Chem Soc 1984; 61:129–131.Google Scholar
  47. 47.
    Robert M, Mercade ME, Bosch MP et al. Effect of the carbon source on biosurfactant production by pseudomonas aeruginosa 44T. Biotechnol Lett 1989; 11:871–874.CrossRefGoogle Scholar
  48. 48.
    Rosenberg E, Zuckerberg A, Rubinovitz C et al. Emulsifier arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol 1979; 37:402–408.PubMedGoogle Scholar
  49. 49.
    Zukerberg A, Diver A, Peeri Z et al. Emulsifier of arthrobacter RAG-1: chemical and physical properties. Appl Environ Microbiol 1979; 37:414–420.Google Scholar
  50. 50.
    Bach H, Berdichevsky Y, Gutnick D. An exocellular protein from the oil-degrading microbe acinetobacter venetianus RAG-1 enhances the emulsifying activity of the polymeric bioemulsifier emulsan. Appl Environ Microbiol 2003; 69:2608–2615.CrossRefPubMedGoogle Scholar
  51. 51.
    Rosenberg E, Rubinovitz C, Legmann R et al. Purification and chemical properties of acinetobacter calcoaceticus A2 biodispersan. Appl Environ Microbiol 1988; 54:323–326.PubMedGoogle Scholar
  52. 52.
    Elkeles A, Rosenberg E, Ron EZ. Production and secretion of the polysaccharide biodispersan of acinetobacter calcoaceticus A2 in protein secretion mutants. Appl Environ Microbiol 1994; 60:4642–4645.PubMedGoogle Scholar
  53. 53.
    Navonvenezia S, Zosim Z, Gottieb A et al. Alasan, a new bioemulsifier from acinetobacter radioresistens. Appl Environ Microbiol 1995; 61:3240–3244.Google Scholar
  54. 54.
    Barkay T, Navon-Venezia S, Ron EZ et al. Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 1999; 65:2697–2702.PubMedGoogle Scholar
  55. 55.
    Toren A, Segal G, Ron EZ et al. Structure-function studies of the recombinant protein bioemulsifier AlnA. Environ Microbiol 2002; 4:257–261.CrossRefPubMedGoogle Scholar
  56. 56.
    Toren A, Navon-Venezia S, Ron EZ et al. Emulsifying activities of purified alasan proteins from acinetobacter radioresistens KA53. Appl Environ Microbiol 2001; 67:1102–1106.CrossRefPubMedGoogle Scholar
  57. 57.
    Cirigliano MC, Carman GM. Isolation of a bioemulsifier from candida lipolytica. Appl Environ Microbiol 1984; 48:747–750.PubMedGoogle Scholar
  58. 58.
    Cameron DR, Cooper DG, Neufeld RJ. The mannoprotein of saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol 1988; 54:1420–1425.PubMedGoogle Scholar
  59. 59.
    Kappeli O, Walther P, Muller M et al. Structure of cell surface of the yeast candida tropicalis and its relation to hydrocarbon transport. Arch Microbiol 1984; 138:279–282.CrossRefPubMedGoogle Scholar
  60. 60.
    Koronelli TV, Komarova TI, Denisov YV. Chemical composition and role of peptidoglycolipid of pseudomonas aeruginosa. Mikrobiologiya 1983; 52:767–770.Google Scholar
  61. 61.
    Desai AJ, Patel KM, Desai JD. Emulsifier production by pseudomonas fluorescence during the growth on hydrocarbon. Curr Sci 1988; 57:500–501.Google Scholar
  62. 62.
    Kappeli O, Finnerty WR. Partition of alkane by an extracellular vesicle derived from hexadecane-grown acinetobacter. J Bacteriol 1979; 140:707–712.PubMedGoogle Scholar
  63. 63.
    Nitschke M, Costa SGVAO. Biosurfactants in food industry. Trends Food Sci Technol 2007; 18:252–259.CrossRefGoogle Scholar
  64. 64.
    Singh A, Van Hamme JD, Ward OP. Surfactants in microbiology and biotechnology: part2. Application aspects. Biotechnol Adv 2007; 25:99–121.CrossRefPubMedGoogle Scholar
  65. 65.
    Makkar R, Cameotra SS. An update on the use of unconventional substrates for biosurfactant production and their application. Appl Microbiol Biotechnol 2002; 58:428–434.CrossRefPubMedGoogle Scholar
  66. 66.
    Van Hamme JD, Singh A, Ward OP. Physiological aspect. Part1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 2006; 24:604–620.CrossRefPubMedGoogle Scholar
  67. 67.
    Das K, Mukherjee AK. Characterization of biochemical properties and biological activities of biosurfactants produced by pseudomonas aeruginosa mucoid and nonmucoid strains. Appl Microbiol Biotechnol 2005; 69:192–199.CrossRefPubMedGoogle Scholar
  68. 68.
    Das K, Mukherjee AK. Assessment of mosquito larvicidal potency of cyclic lipopeptides produced by bacillus subtilis strains. Acta Tropica 2006; 97:168–173.CrossRefPubMedGoogle Scholar
  69. 69.
    Mukherjee AK. Potential application of cyclic lipopeptide biosurfactants produced by bacillus subtilis strains in laundry detergent formulations. Lett Appl Microbiol 2007; 45:330–335.CrossRefPubMedGoogle Scholar
  70. 70.
    Das K, Mukherjee AK. Differential utilization of pyrene as the sole source of carbon by bacillus subtilis and pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability. J Appl Microbiol 2007; 102:195–203.CrossRefPubMedGoogle Scholar
  71. 71.
    Das K, Mukherjee AK. Crude petroleum-oil biodegradation efficiency of bacillus subtilis and pseudomonas aeruginosa strains isolated from petroleum oil contaminated soil from north-east india. Bioresource Technol 2007; 98:1339–1345.CrossRefGoogle Scholar
  72. 72.
    Mulligan CN. Environmental applications of biosurfactants. Environ Pollution 2005; 133:183–198.CrossRefGoogle Scholar
  73. 73.
    Hunt PG, Robinson KG, Ghosh MM. The role of biosurfactants in biotic degradation of hydrophobic organic compounds. In: Hinchee RE, Alleman BC, Hoeppel RE et al, eds. Hydrocarbon Bioremediation. Boca Raton: Lewis Publishers, 1994:318–322.Google Scholar
  74. 74.
    Noordman WH, Janssen DB. Rhamnolipid stimulates uptake of hydrophobic compounds by pseudomonas aeruginosa. Appl Environ Microbiol 2002; 68:4502–4508.CrossRefPubMedGoogle Scholar
  75. 75.
    Banat IM, Samarah N, Murad M et al. Biosurfactant production and use in oil tank clean-up. World J Microbiol Biotechnol 1991; 7:80–88.CrossRefGoogle Scholar
  76. 76.
    Lillienberg L, Hogstedt B, Nilson L. Health-effects of tank cleaners. Amer Ind Hygiene Assoc J 1992; 53:95–102.Google Scholar
  77. 77.
    Singer ME, Vogt Finnerty WR. Microbial metabolism of straight and branched alkanes. In: Atlas R, ed. Petroleum Microbiology. New York: Collier Mac Millan, 1984:1–59.Google Scholar
  78. 78.
    Van Dyke MI, Lee H, Trevors JT. Applications of microbial surfactants. Biotech Adv 1991; 9:241–252.CrossRefGoogle Scholar
  79. 79.
    Morkes J. Oil-spills-whose technology will clean up. R and D Mazagine 1993; 35:54–56.Google Scholar
  80. 80.
    Bubela B. A comparison of strategies for enhanced oil recovery using in situ and ex situ produced biosurfactants. Surfactant Science Series 1987; 25:143–161.Google Scholar
  81. 81.
    Abu-Ruwaida AS, Banat IM, Haditirto S et al. Isolation of biosurfactant-producing bacteria-product characterization and evaluation. Acta Biotechnologica 1991; 11:315–324.CrossRefGoogle Scholar
  82. 82.
    Banat IM. The isolation of a thermophilic biosurfactant producing bacillus sp. Biotech Lett 1993; 15:591–594.CrossRefGoogle Scholar
  83. 83.
    Das K, Mukherjee AK. Comparison of lipopeptide biosurfactants production by bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial application of biosurfactants. Process Biochem 2007; 42:1191–1199.CrossRefGoogle Scholar
  84. 84.
    Tanner RS, Udegbunam EO, McInerney MJ et al. Microbially enhanced oil recovery from carbonate reservoirs. Geomicrobiol J 1991; 9:169–195.CrossRefGoogle Scholar
  85. 85.
    Hitzman DO. Petroleum microbiology and the history of its role in enhanced oil recovery. In: Donaldson EC, Clark JB, eds. Proc 1982. International Conf: Microbial enhancement of oil recovery. Springfield: NTIS, 1983:163–218.Google Scholar
  86. 86.
    Youssef N, Simpson DR, Duncan KE et al. In situ biosurfactant production by bacillus strains injected into a limestone petroleum reservoir. Environ Microbiol 2007; 73:1239–1247.CrossRefGoogle Scholar
  87. 87.
    Kachholz T, Schlingmann M. Possible food and agricultural application of microbial surfactants: an assessment. In: Kosaric N, Cairns WL, Grey NCC, eds. Biosurfactant and Biotechnology, Vol 25. New York: Marcel Dekker Inc, 1987:183–208.Google Scholar
  88. 88.
    Vater PJ. Lipopeptides in food application. In: Kosaric N, ed. Biosurfactant—Production, Properties and Applications. New York: Marcel Dekker Inc, 1986:419–446.Google Scholar
  89. 89.
    Van Haesendonck IPH, Vanzeveren ECA. Rhamnolipids in bakery products. W.O. 2004/040984, International application patent (PCT), 2004.Google Scholar
  90. 90.
    Iyer A, Mody K, Jha B. Emulsifying properties of a marine bacterial exopolysaccharide. Enzyme Microbial Technol 2006; 38:220–222.CrossRefGoogle Scholar
  91. 91.
    Ashwati N, Kumar A, Makkar RS et al. Biodegradation of soil-applied endosulfan in the presence of a biosurfactant. J. Environ Sci Health B 1999; 34:793–803.CrossRefGoogle Scholar
  92. 92.
    Kulkarni M, Chaudhari R, Chaudhari A. Novel tensio-active microbial compounds for biocontrol applications. In: Ciancio A, Mukerji KG, eds. General Concepts in Integrated Pest and Disease Management. Springer Netherlands 2007:295–304.CrossRefGoogle Scholar
  93. 93.
    Ongena M, Jacques P, Touré Y et al. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of bacillus subtilis. Appl Microbiol Biotechnol 2005; 69:29–38.CrossRefPubMedGoogle Scholar
  94. 94.
    Ramarathnam R, Bo S, Chen Y et al. Molecular and biochemical detection of fengycin-and bacillomycin D-producing bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 2007; 53:901–911.CrossRefPubMedGoogle Scholar
  95. 95.
    Assie LK, Deleu M, Arnaud L et al. Insecticide activity of surfactins and iturins from a biopesticide bacillus subtilis cohn (S499 strain). Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 2002; 67:647–655.PubMedGoogle Scholar
  96. 96.
    Vollenbroich D, Özel M, Vater J et al. Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from bacillus subtilis. Biologicals 1997; 25:289–297.CrossRefPubMedGoogle Scholar
  97. 97.
    Yakimov MM, Timmis KN, Wray V et al. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface bacillus licheniformis BAS 50. Appl Environ Microbiol 1995; 61:1706–1713.PubMedGoogle Scholar
  98. 98.
    Wang X, Gong L, Liang S et al. Algicidal activity of rhamnolipid biosurfactants produced by pseudomonas aeruginosa. Harmful Algae 2005; 4:433–443.CrossRefGoogle Scholar
  99. 99.
    Thimon L, Peypoux F, Wallach J et al. Effect of the lipopeptide antibiotic iturin A, on morphology and membrane ultrastructure of yeast cells. FEMS Microbiol Lett 1995; 128:101–106.CrossRefPubMedGoogle Scholar
  100. 100.
    Itokawa H, Miyashita T, Morita H et al. Structural and conformational studies of [Ile7] and [Leu7] surfactins from bacillus subtilis. Chem Pharm Bul 1994; 42:604–607.Google Scholar
  101. 101.
    Takizawa M, Hida T, Horiguchi T et al. Tan-1511 A, B and C, microbial lipopeptides with G-CSF and GM-CSF inducing activity. J Antibiot 1995; 48:579–588.PubMedGoogle Scholar
  102. 102.
    Inoh Y, Kitamoto D, Hirashima N et al. Biosurfactant MEL-A dramatically increases gene transfection via membrane fusion. J Control Release 2004; 94:423–431.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Department of Molecular Biology and BiotechnologyTezpur UniversityTezpurIndia
  2. 2.Department of Diagnostic Medicine and PathobiologyKansas State UniversityManhattanUSA

Personalised recommendations