Skip to main content

Structural and Molecular Characteristics of Lichenysin and Its Relationship with Surface Activity

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 672))

Abstract

Lichenysins are most potent anionic cyclic lipoheptapeptide biosurfactants produced by Bacillus licheniformis on hydrocarbonless medium with mainly glucose as carbon source. They have the capacity to lower the surface tension of water from 72 to 27 mN/m. Based on species specific variations they are named lichenysin A, B, C, D, G and surfactant BL86. The lowest ever interfacial tension against decane of 0.006 mN/m is obtained with acid precipitated lichenysin B. Surfactant BL86 and lichenysin B have recorded lowest ever CMC of 10 mg/L by any surfactant under optimal conditions. Surface and interfacial tension lowering ability bears significance in the context of oil recovery from oil reservoir. Similarity exists between structure and biosynthesis of surfactin and lichenysin. Surfactin being the most studied of the two, understanding its structure and biosynthesis gives an insight into the structure and biosynthesis of lichenysin. Lichenysin is synthesized by a multienzyme complex, lichenysin synthetase (LchA/ Lic) encoded by 32.4 (26.6 kb) lichenysin operon lchA (lic). The structure of lichenysin and its operon indicate the nonribosomal biosynthesis with the same multifunctional modular arrangement as seen in surfactin synthetase SrfA. The lchA operon consists of lchAA-AC (lic A-C) and lchA TE (licTE) genes encoding the proteins LchAA, LchAB, LchAC and thioesterase LchA-TE. The licA (lchAA) gene is 10,746 bp and codes for a 3,582 amino acids protein, licB (lchAB) gene is 10,764 bp and codes for a similar sized protein, while licC (lchAC) gene is 3,864 bp and codes for protein containing 1,288 amino acid. The biotechnological potential of lichenysin in MEOR has triggered research on structure-activity relationship. Both the nature of peptide and fatty acid dictate the activity of the biosurfactant. Tailormade biosurfactant with desired attributes can be obtained from engineered synthetases. Basic studies are lacking on mechanism of biosynthesis by lichenysin synthetase however, studies on various aspects of lichenysin including regulation are expected to swell in coming years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 1997; 61(1):47–64.

    CAS  PubMed  Google Scholar 

  2. Rosenberg E, Ron EZ. High-and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 1999; 52:154–162.

    Article  CAS  PubMed  Google Scholar 

  3. Vater J. Lipopeptides, an attractive class of microbial surfactants. Prog Colloid Polymer Sci 1986; 72:12–18.

    Article  CAS  Google Scholar 

  4. Batista SB, Mounteer AH, Amorim FR et al. Isolation and characterization of biosurfactant/bioemulsifierproducing bacteria from petroleum contaminated sites. Biores Technol 2006; 97:868–875.

    Article  CAS  Google Scholar 

  5. Ron EZ, Rosenberg E. Natural roles of biosurfactants. Env Microbiol 2001; 3(4):229–236.

    Article  CAS  Google Scholar 

  6. Lin S-C. Biosurfactants: Recent advances. J Chem Tech Biotechnol 1996; 66:109–120.

    Article  CAS  Google Scholar 

  7. Rodrigues L, Banat IM, Teixeira J et al. Biosurfactants: potential applications in medicine. J Antimicro Chemotherapy 2006; 57:609–618.

    Article  CAS  Google Scholar 

  8. Neu TR. Significance of bacterial surface active compounds in interaction of bacteria with interfaces. Microbiol Rev 1996; 60(1):151–166.

    CAS  PubMed  Google Scholar 

  9. Healy MG, Devine CM, Murphy R. Microbial production of biosurfactants. Resources Conservation Recycling 1996; 18:41–57.

    Article  Google Scholar 

  10. Christofi N, Ivshina IB. Microbial surfactants and their use in field studies of soil remediation. 2002; 93:915–929.

    CAS  Google Scholar 

  11. Mulligan CN. Environmental applications for biosurfactants. Env Pollution 2005; 133:183–198.

    Article  CAS  Google Scholar 

  12. Banat IM. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review. Biores Technol 1995; 51:1–12.

    Article  CAS  Google Scholar 

  13. Jeneman GE, McInerney MJ, Knapp RM et al. A halotolerant, biosurfactant—producing Bacillus species potentially useful for enhanced oil recovery. Dev Ind Microbiol 1983; 24:485–492.

    Google Scholar 

  14. Yakimov MM, Timmis KN, Wray V. Characterization of new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Env Microbiol 1995; 61(5):1706–1713.

    CAS  Google Scholar 

  15. Yakimov MM, Amro MM, Brock M et al. The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. J Pet Sci Engg 1997; 18:147–160.

    Article  CAS  Google Scholar 

  16. Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res’ Commun 1968; 31:488–494.

    Article  CAS  Google Scholar 

  17. Arima K, Tamura G, Kakinuma A. Surfactin 1972; U.S. patent no. 3, 687,926.

    Google Scholar 

  18. Peypoux F, Bonmatin JM, Wallach J. Recent trends in biochemistry of surfactin. Appl Microbiol Biotechol 1999; 51:553–563.

    Article  CAS  Google Scholar 

  19. Cooper DG, MacDonald CR, Duff SJB et al. Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Env Micro 1981; 42(3):408–412.

    CAS  Google Scholar 

  20. Marahiel MA, Protein templates for the biosynthesis of peptide antibiotics. Chem Biol 1997; 4(8):561–567.

    Article  CAS  PubMed  Google Scholar 

  21. Mootz HD, Schwarzer D, Marahiel MA. Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chem Biochem 2002; 3:490–504.

    CAS  Google Scholar 

  22. Folmsbee M, Duncan KH, Nagle D et al. Re-identification of the halotolerant, biosurfactant-producing Bacillus licheniformis strain JF-2 as Bacillus mojavensis strain JF-2. Syst Appl Microbiol 2006:645–649.

    Google Scholar 

  23. Javaheri M, Jenneman GE, McInerney MJ et al. Anaerobic production of a biosurfactant by Bacillus licheniformis JF-2. Appl Env Microbiol 1985; 50(3):698–700.

    CAS  Google Scholar 

  24. McInerney MJ, Javaheri M and Nagle DP Jr. Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. J Ind Microbiol 1989; 4:1–7.

    Article  Google Scholar 

  25. McInerney MJ, Jenneman GE, Knapp RM et al. Biosurfactant and enhanced oil recovery. 1985; U.S. patent no. 482308.

    Google Scholar 

  26. McInerney MJ, Knapp RM, Chisholm JL et al. Use of indigenous or injected microorganisms for enhanced oil recovery In microbial Biosystems: New frontiers Proc 8th Int Symp Microbial Ecol Bell CR, Brylinsky M, Johnson-Green P. (eds.) Atlantic Canada Soc Microbial Ecol Halifax, Canada 1999.

    Google Scholar 

  27. Horowitz S, Gilbert JN, Griffin WM. Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. J Ind Microbiol 1990; 6:243–248.

    Article  CAS  Google Scholar 

  28. Horowitz S, Griftin WM. Structural analysis of Bacillus licheniformis 86 Surfactant. J Ind Microbiol 1991; 7:45–52.

    Article  CAS  PubMed  Google Scholar 

  29. Jenny K, Kappeli O, Fletcher A. Biosurfactants from Bacillus licheniformis: structural analysis and characterization. Appl Microbiol Biotechnol 1991; 36:5–13.

    Article  CAS  PubMed  Google Scholar 

  30. Lin S-C, Minton MA, Sharma MM et al. Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. 1994; 60(1):31–38.

    CAS  Google Scholar 

  31. Yakimov MM, Abraham W-R, Meyer H et al. Structural characterization of lichenysin A components by fast atom bombardment tandem mass spectrometry. Biochim et Biophys Acta 1999; 1438:273–280.

    CAS  Google Scholar 

  32. Grangemard I, Bonmatin J-M, Bernillon J et al. Lichemysin G, a novel family of lipopeptide biosurfactants from Bacillus licheniformis IM1307: Production, Isolation and structural evaluation by NMR and mass spectrometry. 1999; 52(4):363–373.

    CAS  Google Scholar 

  33. Konz D, Doekel S, Marahiel MA. Molecular and Biochemical characterization of the protein template contolling biosynthesis of the lipopeptide lichenysin. J Bac 1999; 181(1):133–140.

    CAS  Google Scholar 

  34. Mulligan CN, Cooper DG, Neufeld RJ. Selection of microbes producing biosurfactants in media without hydrocarbons. J Ferment Technol 1984; 62(4):311–314.

    CAS  Google Scholar 

  35. Vater J, Kablitz B, Wilde C et al. Matrix-Assiated Laser desorption Ionisation-Time of Flight mass spectrometry pf lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Env Microbiol 2002; 68(12):6210–6219.

    Article  CAS  Google Scholar 

  36. Li Y-M, Haddad NIA, Yang S-Z et al. Variants of lipopeptides produced by Bacillus licheniformis HSN221 in different medium components evaluated by a rapid method ESI-MS. Int J Peptide Res and therapeutics 2008:1–7.

    Google Scholar 

  37. Batrakov SG, Rodinova TA, Esipov SE. A novel lipopeptide, an inhibitor of bacterial adhesion from the thermophilic and halotolerant subsurface Bacillus licheniformis strain 603. Biochim Et Biophy Acta 2003; 1634:107–115.

    CAS  Google Scholar 

  38. Thaniyavarn J, Roongsawang N, Kameyama T et al. Production and characterization of biosurfactants from Bacillus licheniformis F2.2. Biosci Biotechnol Biochem 2003; 67(6):1239–1244.

    Article  CAS  PubMed  Google Scholar 

  39. Tendulkar SR, Saikumari YK, Patel V et al. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98 and its effect on phytopathogen Magnaporthe grisea. J App Microbiol 2007; 1–9.

    Google Scholar 

  40. Yakimov MM, Kröger A, Slepak TN et al. A putative lichenysin A synthetase operon in Bacillus licheniformis: initial characterization. Biochim et Biophys Acta 1998; 1399:141–153.

    CAS  Google Scholar 

  41. Yakimov MM, Golyshin PN. Com-A dependent transcriptional activation of lichenycin A synthetase promoter in Bacillus subtilis cells. Biotechnol Prog 1997; 13:757–761.

    Article  CAS  PubMed  Google Scholar 

  42. Cao S, Yang Y, Ng NLJ et al. Macrolactonization catalysed by the thioesterase domain of the nonribosomal peptide synthetase responsible for lichenycin biosynthesis. Biorg Medicinal Chem Lett 2005; 15(10):2595–2599.

    Article  CAS  Google Scholar 

  43. Roongsawang N, Lin SP, Washio K et al. Phylogenetic analysis of condensation domains in the ribosomal peptide synthetases. FEMS Microbiol Lett 2005; 252:143–151.

    Article  CAS  PubMed  Google Scholar 

  44. Morikawa M, Hirata Y, Imanaka T. A study of the structure-function relationship of lipopeptide bioosurfactants. Biochim et Biophys Acta 2000; 1488:211–218.

    CAS  Google Scholar 

  45. Peypoux F, Bonmatin J-M, Labbe H et al. [Ala4] Surfactin, a novel isoform from Bacillus subtilis studied by mass and NMR spectroscopies. Eur J Biochem 1994; 224:89–96.

    Article  CAS  PubMed  Google Scholar 

  46. Grangemard I, Peypoux F, Wallach J et al. Lipopeptides with improved properties: structure by NMR, purification by HPLC and structure-activity relationships of new isoleucyl-rich surfactins. Biochim Biophys Acta 1999; 1418:307–319.

    Article  Google Scholar 

  47. Bonmatin J-M, Laprévote O, Peypoux F, Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Conmbinatorial chemistry and high throughput screening 2003; 6:541–556.

    CAS  Google Scholar 

  48. Grangemard I, Wallach J, Maget-Dana R et al. Lichenysin: a more efficient cation chelator than surfactin. App Biochem Biotechnol 2001; 90(3):199–210.

    Article  CAS  Google Scholar 

  49. Symmank H, Franke P, Saenger W et al. Modification of biologically active peptides: production of novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein Engg 2002; 15(11):913–921.

    Article  CAS  Google Scholar 

  50. Symmank H, Saenger W, Bernhard F. Analysis of engineered multifunctional peptide synthetases: enzymatic characterization of surfactin synthetase domains in hybrid bimodular systems. J Biol Chem 1999; 274(31):21581–21588.

    Article  CAS  PubMed  Google Scholar 

  51. Youssef NH, Duncan KE, McInerney MJ. Importance of 3-hydroxy fatty acid composition of lipopeptides for biosurfactant activity. 2005; 71(12):7690–7695.

    CAS  Google Scholar 

  52. Yakimov MM, Fredrickson HL, Timmis KN. Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A a lipopeptide biosurfactant from Bacillus licheniformis BAS50. Biotechnol Appl Biochem 1996; 23(pt 1):13–18.

    CAS  PubMed  Google Scholar 

  53. Yakimov MM, Giuliano L, Timmis KN et al. Recombinant acylheptapeptide lichenysin: high level of production of Bacillus subtilis cells. J Mol Microbiol Biotechnol 2000; 2(2):217–24.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Anuradha S., N. (2010). Structural and Molecular Characteristics of Lichenysin and Its Relationship with Surface Activity. In: Sen, R. (eds) Biosurfactants. Advances in Experimental Medicine and Biology, vol 672. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5979-9_23

Download citation

Publish with us

Policies and ethics