Skip to main content

Enrichment and Purification of Lipopeptide Biosurfactants

  • Chapter
Biosurfactants

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 672))

Abstract

Agreat many methods are available for the concentration of biosurfactants from microbiological media. The strongest known biosurfactant, surfactin, serves as a model in many studies, so is used here to illustrate the diversity in approaches to product enrichment. Common physiochemical properties mean that many of these methods can be applied to other systems. Although acid precipitation is the most commonly used form of enrichment, phase separation is both an intrinsic property of surfactants and a useful tool for biotechnology. Direct liquid partitioning, membrane ultrafiltration and foam fractionation can all be regarded as phase separation technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cameron DR, Cooper DG, Neufeld RJ. The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol. 1988; 54:1420–1425.

    CAS  PubMed  Google Scholar 

  2. Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun. 1968; 31:488–494.

    Article  CAS  PubMed  Google Scholar 

  3. Chen HL, Chen YS, Juang RS. Recovery of surfactin from fermentation broths by a hybrid salting-out and membrane filtration process. Separation and Purification Technology 2008; 59:244–252.

    Article  CAS  Google Scholar 

  4. Darton RC, Supino S, Sweeting KJ. Development of a multistaged foam fractionation column. Chemical Engineering and Processing 2004; 43:477–482.

    Article  CAS  Google Scholar 

  5. Leonard R, Lemlich R. Interstitial liquid flow in foam. I. Theoretical model and application to foam fractionation. II. Experimental verification and observations. AIChE J. 1965; 18–25:25–29.

    Article  Google Scholar 

  6. Uraizee F, Narsimhan G. Foam fractionation of proteins and enzymes. II. Performance and modelling. Enzyme and Microbial Technology 1990; 12:315–316.

    Article  CAS  PubMed  Google Scholar 

  7. McInerney MJ, Javaheri M, Nagle DP Jr. Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. J Ind Microbiol. 1990; 5:95–101.

    Article  CAS  PubMed  Google Scholar 

  8. Kinnersley HW, Peters RA. The relation of hydrogen ion concentration to the precipitation of purified torulin (yeast vitamin B(1)) by phosphotungstic acid. Biochem J. 1930; 24:1856–1863.

    CAS  PubMed  Google Scholar 

  9. Chen C-Y, Baker SC, Darton RC. Batch production of biosurfactant with foam fractionation. J Chem Technol Biotechnol. 2006; 81:1923–1931.

    Article  CAS  Google Scholar 

  10. Chiocchini C, Linne U, Stachelhaus T. In vivo biocombinatorial synthesis of lipopeptides by COM domain-mediated reprogramming of the surfactin biosynthetic complex. Chem Biol. 2006; 13:899–908.

    Article  CAS  PubMed  Google Scholar 

  11. Kim SH, Lim EJ, Lee SO et al. Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol Appl Biochem. 2000; 31:249–253.

    Article  PubMed  Google Scholar 

  12. Drouin CM, Cooper DG. Biosurfactants and aqueous two-phase fermentation. Biotechnol Bioeng. 1992; 40:86–90.

    Article  CAS  PubMed  Google Scholar 

  13. Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev. 1997; 61:47–64.

    CAS  PubMed  Google Scholar 

  14. Chen HL, Juang RS. Recovery and separation of surfactin from pretreated fermentation broths by physical and chemical extraction. Biochem Eng J. 2008; 38:39–46.

    Article  CAS  Google Scholar 

  15. Kuyukina MS, Ivshina IB, Philp JC et al. Recovery of Rhodococcus biosurfactants using methyl tertiarybutyl ether extraction. J Microbiol Methods. 2001; 46:149–156.

    Article  CAS  PubMed  Google Scholar 

  16. Sen R, Swaminathan T. Characterization of concentration and purification parameters and operating conditions for the small-scale recovery of surfactin. Process Biochemistry 2005; 40:2953–2958.

    Article  CAS  Google Scholar 

  17. Mulligan CN, Gibbs BF. Recovery of biosurfactants by ultrafiltration. J Chem Technol Biotechnol. 1990; 47:23–29.

    Article  CAS  PubMed  Google Scholar 

  18. Hafez M, Isa M, Coraglia DE et al. Recovery and purification of surfactin from fermentation broth by a two-step ultrafiltration process. J Memb Sci. 2007; 296:51–57.

    Article  Google Scholar 

  19. Chen HL, Chen YS, Juang RS. Flux decline and membrane cleaning in cross-flow ultrafiltration of treated fermentation broths for surfactinnext term recovery. Separation and Purification Technology 2008; 62:47–55.

    Article  CAS  Google Scholar 

  20. Juang RS, Chen HL, Chen YS. Membrane fouling and resistance analysis in dead-end ultrafiltration of Bacillus subtilis fermentation broths separation and purification technology. In Press doi:10.1016/j. seppur.2008.06.011.

    Google Scholar 

  21. Hafez M, Isa M, Frazier RA et al. Recovery and purification of surfactin from fermentation broth by a two-step cross-flow ultrafiltration process Separation and Purification Technology 2008; In Press doi:10.1016/j.seppur.2008.09.008.

    Google Scholar 

  22. Cho SK, Shim SH, Park KR et al. Purification and characterization of a biosurfactant produced by Pseudomonas sp. G11 by asymmetrical flow field-flow fractionation (AsFlFFF). Anal Bioanal Chem. 2006; 386:2027–2033.

    Article  CAS  PubMed  Google Scholar 

  23. Dimitrov K, Gancel F, Montastruc L et al. Liquid membrane extraction of bio-active amphiphilic substances: Recovery of surfactin. Biochem Eng J. 2008; 42:248–253.

    Article  CAS  Google Scholar 

  24. Lambert WD, Du L, Ma Y et al. The effect of pH on the foam fractionation of ß-glucosidase and cellulase. Bioresour Technol. 2003; 87:247–253.

    Article  CAS  PubMed  Google Scholar 

  25. Syldatk C, Wagner F. Production of biosurfactants. In: Kosaric N, Cairns WL, Gray NCC eds, Biosurfactants and Biotechnology. New York: Marcel Dekker Inc, 1987:89–120.

    Google Scholar 

  26. Reiling HE, Thanei-Wyss U, Guerra-Santos LH et al. Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl Environ Microbiol. 1986; 51:985–989.

    CAS  PubMed  Google Scholar 

  27. Cooper DG, MacDonald CR, Duff SJB et al. Enhanced production of surfactin from B. subtilis by continuous product removal and metal cation addition. Appl Environ Microbiol. 1981; 42:408–412.

    CAS  PubMed  Google Scholar 

  28. Grieves RB, Wood RK. Continuous foam fractionation: the effect of operating variables on separation. AIChE J. 1964; 10:456–460.

    Article  CAS  Google Scholar 

  29. Lemlich R. Adsorptive bubble separation methods. Ind Eng Chem Res. 1968; 60:16–29.

    Article  CAS  Google Scholar 

  30. Scamehorn JF. In: Harwell JH, ed. Surfactant-Based Separation Process, Washington, DC: American Chemical Society, 2000; Chapter 1.

    Google Scholar 

  31. Tharapiwattananon N, Scamehorn JF, Osuwan S et al. Surfactant recovery from water using foam fractionation. Separation Science and Technology 1996; 31:1233–1258.

    Article  CAS  Google Scholar 

  32. Kumpabooth K, Scamehorn JF, Osuwan S et al. Surfactant recovery from water using foam fractionation: Effect of temperature and added salt. Separation Science and Technology 1999; 2:157–72.

    Article  Google Scholar 

  33. Davis DA, Lynch HC, Varley J. The application of foaming for the recovery of Surfactin from B. subtilis ATCC 21332 cultures. Enzyme Microb Technol. 2001; 28:346–354.

    Article  CAS  PubMed  Google Scholar 

  34. Noah KS, Fox SL, Bruhn DF et al. Development of continuous surfactin production from potato process effluent by Bacillus subtilis in an airlift reactor. Appl Biochem Biotechnol. 2002; 98–100:803–813.

    Article  PubMed  Google Scholar 

  35. Chen C-Y, Baker SC, Darton RC. Continuous production of biosurfactant with foam fractionation. Journal of Chemical Technology and Biotechnology 2006; 81:1915–1922.

    Article  CAS  Google Scholar 

  36. Noah KS, Bruhn DF, Bala GA. Surfactin production from potato process effluent by Bacillus subtilis in a chemostat. Appl Biochem Biotechnol 2005; 121–124:465–473.

    Article  PubMed  Google Scholar 

  37. Baker SC, Mullins S. Unpublished results Oxford Brookes University, 2008.

    Google Scholar 

  38. Gueza JS, Chenikher S, Cassar JP et al. Setting up and modelling of overflowing fed-batch cultures of Bacillus subtilis for the production and continuous removal of lipopeptides. J Biotechnol. 2007; 131:67–75.

    Article  Google Scholar 

  39. Glazyrina J, Junne S, Thiesen P et al. In situ removal and purification of biosurfactants by automated surface enrichment. Appl Microbiol Biotechnol. 2008; In Press. doi 10.1007/s00253-008-1620-1.

    Google Scholar 

  40. Lunkenheimer K, Wienskol G, Prosser AJ. Automated highperformance purification of surfactant solutions: study of convective-enhanced adsorption. Langmuir 2004; 20:5738–5744.

    Article  CAS  PubMed  Google Scholar 

  41. Liu T, Montastruc L, Gancel F et al. Integrated process for production of surfactin: Part 1: Adsorption rate of pure surfactin onto activated carbon. Biochem Eng J. 2007; 35:333–340.

    Article  CAS  Google Scholar 

  42. Liu T, Montastruc L, Gancel F et al. Integrated process for production of surfactin: Part 2. Equilibrium and kinetic study of surfactin adsorption onto activated carbon. Biochem Eng J. 2008; 38:349–354.

    Article  Google Scholar 

  43. Lin SC, Chen YC, Lin YM. General approach for the development of high performance liquid chromatography methods for biosurfactant analysis and purification. J Chromatogr A. 1988; 2:149–59.

    Google Scholar 

  44. Schenk T, Schuphan I, Schmidt B. High-performance liquid chromatographic determination of the rhamnolipids produced by pseudomonas aeruginosa. J Chromatogr A. 1995; 693:7–13.

    Article  CAS  PubMed  Google Scholar 

  45. Mata-Sandoval JC, Karns J, Torrents A. High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by pseudomonas aeruginosa UG2 on corn oil. J Chromatogr A. 1999; 2:211–220.

    Article  Google Scholar 

  46. Grieves RB, Wood RK. Continuous foam fractionation: the effect of operating variables on separation. AIChE J. 1964; 10:456–460.

    Article  CAS  Google Scholar 

  47. Lemlich R. Adsorptive bubble separation methods. Ind Eng Chem Res. 1968; 60:16–29.

    Article  CAS  Google Scholar 

  48. Scamehorn JF. In: Harwell JH, ed. Surfactant-Based Separation Process, Washington, DC: American Chemical Society, 2000; Chapter 1.

    Google Scholar 

  49. Tharapiwattananon N, Scamehorn JF, Osuwan S et al. Surfactant recovery from water using foam fractionation. Separation Science and Technology 1996; 31:1233–1258.

    Article  CAS  Google Scholar 

  50. Kumpabooth K, Scamehorn JF, Osuwan S et al. Surfactant recovery from water using foam fractionation: Effect of temperature and added salt. Separation Science and Technology 1999; 2:157–72.

    Article  Google Scholar 

  51. Davis DA, Lynch HC, Varley J. The application of foaming for the recovery of Surfactin from B. subtilis ATCC 21332 cultures. Enzyme Microb Technol. 2001; 28:346–354.

    Article  CAS  PubMed  Google Scholar 

  52. Noah KS, Fox SL, Bruhn DF et al. Development of continuous surfactin production from potato process effluent by Bacillus subtilis in an airlift reactor. Appl Biochem Biotechnol. 2002; 98–100:803–813.

    Article  PubMed  Google Scholar 

  53. Chen C-Y, Baker SC, Darton RC. Continuous production of biosurfactant with foam fractionation. Journal of Chemical Technology and Biotechnology 2006; 81:1915–1922.

    Article  CAS  Google Scholar 

  54. Noah KS, Bruhn DF, Bala GA. Surfactin production from potato process effluent by Bacillus subtilis in a chemostat. Appl Biochem Biotechnol 2005; 121–124:465–473.

    Article  PubMed  Google Scholar 

  55. Baker SC, Mullins S. Unpublished results Oxford Brookes University, 2008.

    Google Scholar 

  56. Gueza JS, Chenikher S, Cassar JP et al. Setting up and modelling of overflowing fed-batch cultures of Bacillus subtilis for the production and continuous removal of lipopeptides. J Biotechnol. 2007; 131:67–75.

    Article  Google Scholar 

  57. Glazyrina J, Junne S, Thiesen P et al. In situ removal and purification of biosurfactants by automated surface enrichment. Appl Microbiol Biotechnol. 2008; In Press. doi 10.1007/s00253-008-1620-1.

    Google Scholar 

  58. Lunkenheimer K, Wienskol G, Prosser AJ. Automated highperformance purification of surfactant solutions: study of convective-enhanced adsorption. Langmuir 2004; 20:5738–5744.

    Article  CAS  PubMed  Google Scholar 

  59. Liu T, Montastruc L, Gancel F et al. Integrated process for production of surfactin: Part 1: Adsorption rate of pure surfactin onto activated carbon. Biochem Eng J. 2007; 35:333–340.

    Article  CAS  Google Scholar 

  60. Liu T, Montastruc L, Gancel F et al. Integrated process for production of surfactin: Part 2. Equilibrium and kinetic study of surfactin adsorption onto activated carbon. Biochem Eng J. 2008; 38:349–354.

    Article  Google Scholar 

  61. Lin SC, Chen YC, Lin YM. General approach for the development of high performance liquid chromatography methods for biosurfactant analysis and purification. J Chromatogr A. 1988; 2:149–59.

    Google Scholar 

  62. Schenk T, Schuphan I, Schmidt B. High-performance liquid chromatographic determination of the rhamnolipids produced by pseudomonas aeruginosa. J Chromatogr A. 1995; 693:7–13.

    Article  CAS  PubMed  Google Scholar 

  63. Mata-Sandoval JC, Karns J, Torrents A. High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by pseudomonas aeruginosa UG2 on corn oil. J Chromatogr A. 1999; 2:211–220.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon C. Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Baker, S.C., Chen, CY. (2010). Enrichment and Purification of Lipopeptide Biosurfactants. In: Sen, R. (eds) Biosurfactants. Advances in Experimental Medicine and Biology, vol 672. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5979-9_21

Download citation

Publish with us

Policies and ethics